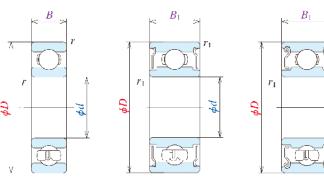


MINIATURLAGER ROULEMENTS MINIATURES

Inhaltsverzeichnis

Seiten 2-25	Masstabellen
Seiten 26-28	Umschlüsselungstabellen
Seiten 29-50	Technische Erläuterungen
Seiten 51-53	Schaden, Ursache & Wartung

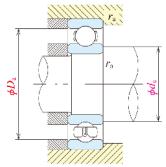
Herausgeber und Gestaltung: MTO & Co AG Copyright© MTO & Co AG

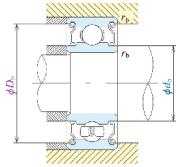

Nachdruck, auch auszugsweise, bei Quellenangabe und Zusendung eines Belegexemplars nur nach Absprache mit MTO & Co. gestattet. Die Angaben in dieser Technischen Schrift basieren auf unseren allgemeinen Erfahrungen und Kenntnissen bei Drucklegung und sollen dem technisch erfahrenen Leser Hinweise für mögliche Anwendungen geben. Die Produktinformationen beinhalten jedoch keine Zusicherung von Eigenschaften oder Garantie der Eignung des Produkts für den Einzelfall. Sie entbinden den Anwender nicht davon, die Anwendung des ausgewählten Produkts vorher im Versuch zu testen. Wir empfehlen ein individuelles Beratungsgespräch und stellen auf Wunsch und nach Möglichkeit auch gern Muster für Tests zur Verfügung. MTO Produkte werden kontinuierlich weiterentwickelt. Deshalb behält sich MTO & CO. AG das Recht vor, alle technischen Daten in dieser Druckschrift jederzeit und ohne Vorankündigung zu ändern.

Miniaturlager Nummerierungssystem

DICHTUNGEN & DECKSCHEIBEN KÄFIGE Stahlband: J Teflon-Dichtung mit Sprengring: TTS Stahlkrone: W Stahlschild mit Sprengring: ZZS Kunststoffkrone: TNH Stahlblechschild: ZZ Nylonkrone: TW Kontakt Gummidichtung: 2RS Stahlkäfig genietet: RJ Kontaktlose Gummidichtung: 2RU Vollrollige: V Schub FM: TP (SUS304) Schub F: TD (C3604) MATERIAL RADIALE LAGERLUFT Hartchromstahl Standard: C2, C0(CN), C3, C4, C5 SAE 52100, SUJ2, 100Cr6 ... ohne Symbol Miniatur: MC1 0-5 μm MC2 3-8 µm Edelstahl MC3 5-10 µm AISI440C, SUS440C, X102CrMo17 MC4 8-13 μm KS440 (ACD34), X65Cr13 MC5 13-20 μm MC6 20-28 μm Standard metrisch ... SS -MR, MF, MT & Zollserie ... S Ex.1 ZZ MC3 G105 686 J F Ex.2 608 TW 2RS MC4 P6 G105 W ZZ MC2 P5 Ex.3 MR 52 L503 Ex.4 S MF 128 W TTS MC3 P6 G105 Ex.5 S ER 1458 W ZZS C0 А3 G105 C3 SS RJ 2RS L503 Ex.6 6205 F 2RU Ex.7 6706 SS W C0 G105 ZZS Ex.8 S R 144 J MC4 A5P L503 ZZ Ex.9 R 10 RJ C2 G105 F ΤP Ex.10 3-8M SS L503 **STANDARD LAGERTYPEN TOLERANZKLASSEN** - SCHMIERUNGEN Zoll: R ABEC1: ohne Symbol Ex. Fett Code Zoll mit Flansch: FR А3 ABEC3: Multemp SRL: G105 Zoll mit erweitertem Innenring: RW ABEC5: Α5 Alvania NO.2: G102 Zoll mit erweitertem Innenring Α7 Beacon 325: ABEC7: G106 & Flansch: FRW A5P RPM Grease SRI2: ABEC5P: G108 Standard metrisch: ohne Symbol A7P Isoflex super LDS18: ABEC7P: G110 Metrisch mit Flansch: F ISO CLASSO: ohne Symbol Speziell metrisch: MR ISO CLASS6: P6 Ex. Oil Code Speziell metrisch mit Flansch: MF P5 Aero Shell Fluid 12: L503 ISO CLASS5: ISO CLASS4: Ρ4 Windsor Lube L-245X: L502 Lagerteil Nr.

Einreihige Miniaturkugellager metrisch

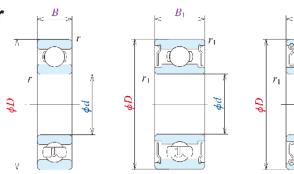

Serie 60.../ MR



Li	Lager-Bezeichnung			Standard Traglasten						
Offen	ZZ	2RS	d	D	В	B ₁	r*	r ₁ *	Cr	Cor
681	-	-	1	3	1	-	0.05	-	84	23
MR 31	-	-		3	1.5	-	0.05	-	84	23
691	-	-		4	1.6	-	0.1	-	145	35
MR 41X	MR 41X ZZ	-	1.2	4	1.8	2.5	0.1	0.1	145	35
681X	681X ZZ	-	1.5	4	1.2	2	0.05	0.05	118	33
691X	691X ZZ	-		5	2	2.6	0.15	0.15	249	69
601X	601X ZZ	-		6	2.5	3	0.15	0.15	347	98
682	682 ZZ	-	2	5	1.5	2.3	0.08	0.08	178	50
MR 52B	MR 52B ZZ	-		5	2	2.5	0.1	0.1	196	58
692	692 ZZ	-		6	2.3	3	0.15	0.15	347	98
MR 62	MR 62 ZZ	-		6	2.5	2.5	0.15	0.15	347	98
MR 72	MR 72 ZZ	-		7	2.5	3	0.15	0.15	404	127
602	602 ZZ	-		7	2.8	3.5	0.15	0.15	404	127
682X	682X ZZ	-	2.5	6	1.8	2.6	0.08	0.08	218	74
692X	692X ZZ	-		7	2.5	3.5	0.15	0.15	404	127
MR 82X	-	-		8	2.5	-	0.2	-	588	188
602X	602X ZZ	-		8	2.8	4	0.15	0.15	578	184
MR 63	MR 63 ZZ	-	3	6	2	2.5	0.1	0.1	218	78
683A	683A ZZ	-		7	2	3	0.1	0.1	410	137
MR 83	-	-		8	2.5	-	0.15	-	588	188
693	693 ZZ	-		8	3	4	0.15	0.15	588	188
MR 93	MR 93 ZZ	-		9	2.5	4	0.2	0.15	599	196
603	603 ZZ	-		9	3	5	0.15	0.15	599	196
623	623 ZZ	-		10	4	4	0.15	0.15	662	229
633	633 ZZ	-		13	5	5	0.2	0.2	1365	510
MR 74	-	-	4	7	2	-	0.1	-	326	121
	MR 74 ZZ	-		7	-	2.5	-	0.1	268	112
MR 84	MR 84 ZZ	-		8	2	3	0.15	0.1	415	146
684A	684A ZZ	-		9	2.5	4	(0.15)*	(0.15)*	672	237
MR 104B	MR 104B ZZ	-		10	3	4	0.2	0.15	745	285
694	694 ZZ	-		11	4	4	0.15	0.15	1008	363
604	604 ZZ	-		12	4	4	0.2	0.2	1008	363
624	624 ZZ	-		13	5	5	0.2	0.2	1365	510
634	634 ZZ	-		16	5	5	0.3	0.3	1817	704

^{1.}Werte in Klammern basieren nicht auf ISO 15 Standard.

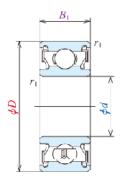
^{2.} Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS. 3. Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

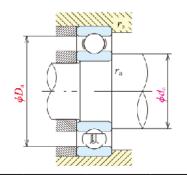


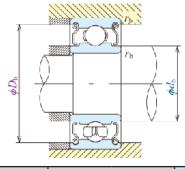
				4/////	1/////			1181111	3/1//////	
max. Dre	hzahlen							Gew	icht	
Fett	Öl	d _a	d _b	D _a	D_{b}	r _a	r _b	offen	ZZ	
offen	offen	min.	max.	min.	max.	min.	max.			
130000	150000	1.4	-	2.6	-	0.05	-	0.03	-	681
130000	150000	1.4	-	2.6	-	0.05	-	0.04	-	MR 31
100000	120000	1.8		3.2	-	0.10	-	0.09	-	691
110000	130000	2.0	1.9	3.2	3.5	0.10	0.10	0.10	0.14	MR 41X
100000	120000	1.9	2.1	3.6	3.6	0.05	0.05	0.07	0.11	681X
85000	100000	2.7	2.5	3.8	4.3	0.15	0.15	0.17	0.20	691X
75000	90000	2.7	3.0	4.8	5.4	0.15	0.15	0.33	0.38	601X
85000	100000	2.6	2.7	4.4	4.2	0.08	0.08	0.12	0.17	682
85000	10000	2.8	2.7	4.2	4.4	0.10	0.10	0.16	0.23	MR 52B
75000	90000	3.2	3.0	4.8	5.4	0.15	0.15	0.28	0.38	692
75000	90000	3.2	3.0	4.8	5.4	0.15	0.15	0.30	0.29	MR 62
63000	75000	3.2	3.8	5.8	6.2	0.15	0.15	0.45	0.49	MR 72
63000	75000	3.2	3.8	5.8	6.2	0.08	0.08	0.51	0.58	602
71000	80000	3.1	3.7	5.4	5.4	0.15	0.15	0.23	0.29	682X
63000	75000	3.7	3.8	5.8	6.2	0.10	0.10	0.41	0.55	692X
60000	67000	4.14	-	6.4	-	0.2	-	0.56	-	MR 82X
60000	71000	3.7	4.1	6.8	7.0	0.15	0.15	0.63	0.83	602X
71000	80000	3.8	3.7	5.2	5.4	0.10	0.10	0.20	0.27	MR 63
63000	75000	3.8	4.0	6.2	6.4	0.10	0.10	0.32	0.45	683A
60000	67000	4.2	-4.3	6.8	-	0.20	-	0.54	-	MR 83
60000	67000	4.2	4.3	6.8	7.0	0.15	0.15	0.61	0.83	693
56000	67000	4.6	4.3	7.4	7.9	0.20	0.15	0.73	1.18	MR 93
56000	67000	4.2	4.3	7.8	7.9	0.15	0.15	0.87	1.45	603
50000	60000	4.2	4.3	8.8	8.0	0.15	0.15	1.65	1.66	623
40000	48000	4.6	6.0	11.4	11.3	0.20	0.20	3.38	3.33	633
60000	67000	4.8	-	6.2	-	0.10	-	0.22	-	MR 74
60000	71000	-	4.8	-	6.3	-	0.10	-	0.29	MR 74
56000	67000	5.2	5.0	6.8	7.4	0.15	0.10	0.36	0.56	MR 84
53000	63000	4.8	5.2	8.2	8.1	0.10	0.10	0.63	1.01	684A
50000	60000	5.6	5.9	8.4	8.8	0.20	0.15	1.04	1.42	MR 104B
48000	56000	5.2	5.6	9.8	9.9	0.15	0.15	1.70	1.75	694
48000	56000	5.6	5.6	10.4	9.9	0.20	0.20	2.25	2.29	604
40000	48000	5.6	6.0	11.4	11.3	0.20	0.20	3.03	3.04	624
36000	43000	6.0	7.5	14.0	13.8	0.30	0.30	5.24	5.21	634

Einreihige Miniaturkugellager

metrisch

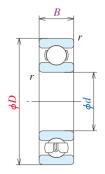

Serie 60.../ MR

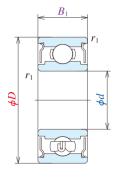



L	ager-Bezeichnu	ng			Dimen	sionen			Standard Traglasten		
Offen	ZZ	2RS	d	D	В	B ₁	r*	r ₁ *	Cr	Cor	
MR 85	-	-	5	8	2	-	0.10	-	326	126	
-	MR 85 ZZ	-		8	-	2.5	-	0.10	292	138	
MR 95	MR 95 ZZ1	-		9	2.5	3	0.15	0.15	452	177	
MR 105	MR 105 ZZ	-		10	3	4	0.15	0.15	452	177	
-	MR 115ZZ	2RS		11	-	4	-	0.15	751	290	
685	685 ZZ			11	3	5	0.15	0.15	751	295	
695	695 ZZ1	2RS		13	4	4	0.20	0.20	1134	452	
605	605 ZZ	2RS		14	5	5	0.20	0.20	1397	530	
625	625 ZZ1	2RS		16	5	5	0.30	0.30	1817	704	
635	635 ZZ1	2RS		19	6	6	0.30	0.30	2457	929	
MR 106	MR 106 ZZ1	-	6	10	2.5	3	0.15	0.10	520	229	
MR 126	MR 126 ZZ	2RS		12	3	4	0.20	0.15	751	307	
686A	686A ZZ	2RS		13	3.5	5	0.15	0.15	1134	462	
696	696 ZZ1	2RS		15	5	5	0.20	0.20	1817	704	
606	606 ZZ	2RS		17	6	6	0.30	0.30	2373	877	
626	626 ZZ1	2RS		19	6	6	0.30	0.30	2457	929	
636	636 ZZ	2RS		22	7	7	0.30	0.30	3465	1439	
MR 117	MR 117 ZZ	-	7	11	2.5	3	0.15	0.10	478	211	
MR 137	MR 137 ZZ	-		13	3	4	0.20	0.15	567	290	
687	687 ZZ1	2RS		14	3.5	5	0.15	0.15	1229	536	
697	697 ZZ1	2RS		17	6	5	0.30	0.30	1691	746	
607	607 ZZ1	2RS		19	6	6	0.30	0.30	2457	929	
627	627 ZZ	2RS		22	7	7	0.30	0.30	3465	1439	
637	637 ZZ1	2RS		26	9	9	0.30	0.30	4778	2069	
MR 128	MR 128 ZZ1	-	8	12	2.5	3.5	0.15	0.10	572	288	
MR 148	MR 148 ZZ	2RS		14	3.5	4	0.20	0.15	861	404	
688A	688A ZZ1	2RS		16	4	5	0.20	0.20	1691	746	
698	698 ZZ	2RS		19	6	6	0.30	0.30	2352	956	
608	608 ZZ	2RS		22	7	7	0.30	0.30	3465	1439	
628	628 ZZ	2RS		24	8	8	0.30	0.30	3518	1502	
638	638 ZZ1	2RS		28	9	9	0.30	0.30	4778	2069	
689	689 ZZ	2RS	9	17	4	5	0.20	0.20	1397	698	
699	699 ZZ1	2RS		10	6	6	0.30	0.30	1806	882	
609	609 ZZ	2RS		24	7	7	0.30	0.30	3518	1502	
629	629 ZZ	2RS		26	8	8	(0.60)*	(0.60)*	4778	2069	
639	639 ZZ	-		30	10	10	0.60	0.60	5355	2510	
1.Werte in Klai	mmern basieren nic	ht auf ISO 15 St	andard.								

Werte in Klammern basieren nicht auf ISO 15 Standard.
 Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.

^{3.} Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

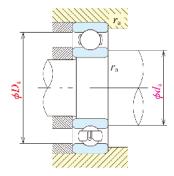


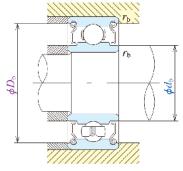


max.	. Drehza	hlen							Gew	richt	
Fett		Öl	d _a	d _b	D_{a}	D_{b}	r _a	r _b	offen	ZZ	
offen	2RS	offen	min.	max.	min.	max.	min.	max.			
53000	-	63000	5.8	-	7.2	-	0.10	-	0.26	-	MR 85
53000	-	63000	-	5.8	-	7.4	-	0.10	-	0.34	-
50000	-	60000	6.2	6.0	7.8	8.2	0.15	0.15	0.50	0.58	MR 95
50000	-	60000	6.2	6.0	8.8	8.4	0.15	0.15	0.95	1.29	MR 105
48000	-	56000	-	6.3	-	9.8	-	0.15	-	1.50	-
45000	-	53000	6.2	6.2	9.8	9.9	0.15	0.15	1.20	1.96	685
43000	40000	50000	6.6	6.6	11.4	11.2	0.20	0.20	2.45	2.50	695
40000	38000	50000	6.6	6.9	12.4	12.2	0.20	0.20	3.54	3.48	605
36000	32000	43000	7.0	7.5	14.0	13.8	0.30	0.30	4.95	4.68	625
32000	30000	40000	7.0	8.5	17.0	16.5	0.30	0.30	8.56	8.34	635
45000	-	53000	7.2	7.0	8.8	9.3	0.15	0.10	0.56	0.68	MR 106
43000	40000	50000	7.6	7.2	10.4	10.9	0.20	0.15	1.27	1.74	MR 126
40000	38000	50000	7.2	7.4	11.8	11.7	0.15	0.15	1.91	2.69	686A
40000	36000	45000	7.6	7.9	13.4	13.3	0.20	0.20	3.88	3.72	696
38000	34000	45000	8.0	8.2	15.0	14.8	0.30	0.30	5.97	6.08	606
32000	30000	40000	8.0	8.5	17.0	16.5	0.30	0.30	8.15	7.94	626
30000	28000	36000	8.0	10.5	20.0	19.0	0.30	0.30	14.00	14.00	636
43000	-	50000	8.2	8.0	9.8	10.5	0.15	0.10	0.62	0.72	MR 117
40000	-	48000	8.6	9.0	11.4	11.6	0.20	0.15	1.58	2.02	MR 137
40000	34000	45000	8.2	8.5	12.8	12.7	0.15	0.15	2.13	2.97	687
36000	28000	43000	9.0	10.2	15.0	14.8	0.30	0.30	5.26	5.12	697
36000	32000	43000	9.0	9.1	17.0	16.5	0.30	0.30	7.67	7.51	607
30000	28000	36000	9.0	10.5	20.0	19.0	0.30	0.30	12.70	12.90	627
28000	22000	34000	9.0	12.8	24.0	22.8	0.30	0.10	24.00	25.00	637
40000	-	48000	9.2	9.0	10.8	11.3	0.15	0.15	0.71	0.97	MR 128
38000	32000	45000	9.6	9.2	12.4	12.8	0.20	0.15	1.86	2.16	MR 148
36000	28000	43000	9.6	10.2	14.4	14.2	0.20	0.20	3.12	4.02	688A
36000	28000	43000	10.0	10.0	17.0	16.5	0.30	0.30	7.23	7.18	698
34000	28000	40000	10.0	10.5	20.0	19.0	0.30	0.30	12.10	12.20	608
28000	24000	34000	10.0	12.0	22.0	20.5	0.30	0.30	17.20	17.40	628
28000	22000	34000	10.0	12.8	26.0	22.8	0.30	0.30	28.30	28.60	638
36000	24000	43000	10.6	11.5	15.4	15.2	0.20	0.20	3.53	4.43	689
34000	24000	40000	11.0	12.0	18.0	17.2	0.30	0.30	8.45	8.33	699
32000	24000	38000	11.0	12.0	22.8	20.5	0.30	0.30	14.50	14.70	609
28000	22000	34000	11.0	12.8	24.0	22.8	0.30	0.30	19.50	19.30	629
24000	-	30000	13.0	16.1	26.0	25.6	0.30	0.30	36.50	36.00	639

Einreihige Miniaturkugellager zoll

Serie R...

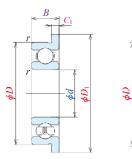


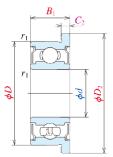


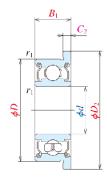
L	ager-Bezeichnu	ung		[Standard Traglasten			
Offen	ZZ	2RS	d	D	В	B ₁	r*	Cr	Cor
R 09	-	-	1.016	3.175	1.191	-	0.10	84	24
R 0	R 0 ZZ	-	1.191	3.967	1.588	2.380	0.10	145	37
R 1	R 1ZZ	-	1.397	4.762	1.984	2.779	0.10	243	69
R 1-4	R 1-4 ZZ	-	1.984	6.350	2.380	3.571	0.10	326	113
R 133	-	-	2.380	4.762	1.588	-	0.10	197	63
-	R 133 ZZ	-		4.762	-	2.380	0.10	150	56
R 1-5	R 1-5 ZZ	-		7.938	2.779	3.571	0.15	578	184
R 144	R 144 ZZ	-	3.175	6.350	2.380	2.779	0.10	297	100
R 2-5	R 2-5 ZZ	-		7.938	2.779	3.571	0.10	588	188
R 2-6	R 2-6 ZZ	-		9.525	2.779	3.571	0.15	672	236
R 2	R 2 ZZ	-		9.525	3.967	3.967	0.30	662	229
R 2A	R 2A ZZ	-		12.700	4.366	4.366	0.30	672	236
R 155	R 155 ZZ	-	3.967	7.938	2.779	3.175	0.10	378	156
R 156	R 156 ZZ	-	4.762	7.938	2.779	3.175	0.10	378	156
R 166	R 166 ZZ	-		9.525	3.175	3.175	0.10	746	284
R 3	R 3 ZZ	-		12.700	3.967	4.978	0.30	1365	509
R 168B	R 168B ZZ	-	6.350	9.525	3.175	3.175	0.10	441	214
R 188	R 188 ZZ	-		12.700	3.175	4.762	0.15	1134	510
R 4B	R 4B ZZ	-		15.875	4.978	4.978	0.30	1691	693
R AA	R 4AA ZZ	-		19.050	5.558	7.142	0.40	2751	1113
R 1810	R 1810 ZZ	-	7.938	12.700	3.967	3.967	0.15	567	290
R 6	R 6 ZZ	-	9.525	22.225	5.558	7.142	0.40	3518	1481

^{1.} Werte in Klammern basieren nicht auf ISO 15 Standard.

^{2.} Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS. 3. Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

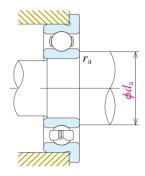


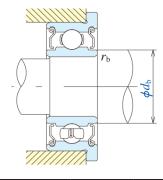



max. Dre	hzahlen						Gew	richt	
Fett	Öl	d _a	d _b	D _a	D _b	r _b	offen	ZZ	
offen	offen	min.	max.	min.	max.	max.			
130000	150000	1.9	-	2.3	-	0.10	0.04	-	R 09
110000	130000	2.0	1.9	3.1	3.5	0.10	0.09	0.11	R 0
90000	110000	2.2	2.3	3.9	4.1	0.10	0.15	0.19	R 1
67000	80000	2.8	3.9	5.5	5.9	0.10	0.35	0.50	R 1-4
80000	95000	3.2	-	3.9	-	0.10	0.10	-	R 133
80000	95000	-	3.0	-	4.2	0.10	-	0.13	R 133
60000	71000	3.6	4.1	6.7	7.0	0.15	0.60	0.72	R 1-5
67000	80000	4.0	3.9	5.5	5.9	0.10	0.25	0.27	R 144
60000	6700	4.0	4.3	7.1	7.3	0.10	0.55	0.72	R 2-5
53000	63000	4.4	4.6	8.3	8.2	0.15	0.96	1.13	R 2-6
56000	67000	5.2	4.8	7.5	8.0	0.30	1.36	1.39	R 2
53000	63000	5.2	4.6	10.7	8.2	0.30	3.30	3.23	R 2A
53000	63000	4.8	5.5	7.1	7.3	0.10	0.51	0.56	R 155
53000	63000	5.6	5.5	7.1	7.3	0.10	0.39	0.42	R 156
50000	60000	5.6	5.9	8.7	8.8	0.10	0.81	0.85	R 166
43000	53000	6.8	6.5	10.7	11.2	0.30	2.21	2.79	R 3
48000	56000	7.2	7.0	8.7	8.9	0.10	0.58	0.62	R 168B
40000	50000	7.6	7.4	11.5	11.6	0.15	1.53	2.21	R 188
38000	45000	8.4	8.4	13.8	13.8	0.30	4.50	4.43	R 4B
36000	43000	9.4	9.0	16.0	16.6	0.40	7.48	9.17	R 4AA
40000	48000	9.2	9.0	11.5	11.6	0.15	1.56	1.48	R 1810
32000	38000	12.6	11.9	19.2	20.0	0.40	9.02	11.00	R 6

Einreihige Miniaturkugellager mit Flansch metrisch

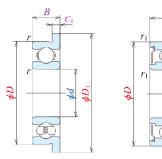
Serie F6.../ MF

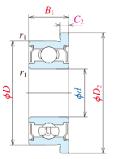


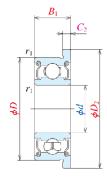


Lager-B	ezeichnung					Dimen	sionen					Standard ⁻	Traglasten
Offen	ZZ	d	D	D ₁	D ₂	В	B ₁	C ₁	C ₂	r*	r ₁ *	Cr	Cor
F 681	-	1	3	3.8	-	1	-	0.3	-	0.05	-	84	24
F 691	-		4	5	-	1.6	-	0.5	-	0.1	-	145	37
MF 41X	-	1.2	4	4.8	-	1.8	-	0.4	-	0.1	-	145	37
F 681X	F 681X ZZ	1.5	4	5	5	1.2	2	0.4	0.6	0.05	0.05	118	35
F 691X	F 691X ZZ		5	6.5	6.5	2	2.6	0.6	0.8	0.15	0.15	249	73
F 601X	F 601X ZZ		6	7.5	7.5	2.5	3	0.6	0.8	0.15	0.15	347	103
F 682	F 682 ZZ	2	5	6.1	6.1	1.5	2.3	0.5	0.6	0.08	0.08	206	53
MF 52B	MF 52B ZZ		5	6.2	6.2	2	2.5	0.6	0.6	0.1	0.1	196	61
F 692	F 692 ZZ		6	7.5	7.5	2.3	3	0.6	0.8	0.15	0.15	347	103
MF 62	-		6	7.2	-	2.5	-	0.6	-	0.15	-	347	103
MF 72	MF 72 ZZ		7	8.2	8.2	2.5	3	0.6	0.6	0.15	0.15	404	133
F 602	F 602 ZZ		7	8.5	8.5	2.8	3.5	0.7	0.9	0.15	0.15	404	133
F 682X	F 682X ZZ	2.5	6	7.1	7.1	1.8	2.6	0.5	0.8	0.08	0.08	218	78
F 692X	F 692X ZZ		7	8.5	8.5	2.5	3.5	0.7	0.9	0.15	0.15	404	133
MF 82X	-		8	9.2	-	2.5	-	0.6	-	0.2	-	588	188
F 602X	F 602X ZZ		8	9.5	9.5	2.8	4	0.7	0.9	0.15	0.15	578	184
MF 63	MF 63 ZZ	3	6	7.2	7.2	2	2.5	0.6	0.6	0.1	0.1	218	78
F 683A	F 683A ZZ		7	8.1	8.1	2	3	0.5	0.8	0.1	0.1	410	137
MF 83	-		8	9.2	-	2.5	-	0.6	-	0.15	-	588	188
F 693	F 693 ZZ		8	9.5	9.5	3	4	0.7	0.9	0.15	0.15	588	188
MF 93	MF 93 ZZ		9	10.2	10.2	2.5	4	0.6	0.8	0.2	0.15	599	196
F 603	F 603 ZZ		9	10.5	10.5	3	5	0.7	1	0.15	0.15	599	196
F 623	F 623 ZZ		10	11.5	11.5	4	4	1	1	0.15	0.15	662	229
F 633	F 633 ZZ		13	15	15	5	5	1	1	0.2	0.2	1365	509
MF 74	-	4	7	8.2	-	2	-	0.6	-	0.1	-	326	121
-	MF 74 ZZ		7	-	8.2	-	2.5	-	0.6	-	0.1	268	112
MF 84	MF 84 ZZ		8	9.2	9.2	2	3	0.6	0.6	0.15	0.1	415	146
F 684	F 684 ZZ		9	10.3	10.3	2.5	4	0.6	1	(0.15)*	(0.15)3	672	236
MF 104B	MF 104B ZZ		10	11.2	11.2	3	4	0.6	0.8	0.2	0.15	746	284
F 694	F 694 ZZ		11	12.5	12.5	4	4	1	1	0.15	0.15	1008	362
F 604	F 604 ZZ		12	13.5	13.5	4	4	1	1	0.2	0.2	1008	362
F 624	F 624 ZZ		13	15	15	5	5	1	1	0.2	0.2	1365	509
F 634	F 634 ZZ		16	18	18	5	5	1	1	0.3	0.2	1817	704

Werte in Klammern basieren nicht auf ISO 15 Standard.
 Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.
 Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

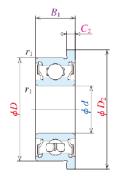


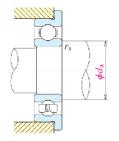


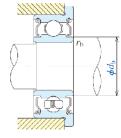

max. Dre	hzahlen					Gew	icht	
Fett	Öl	d _a	d _b	r _a	r _b	offen	ZZ	
offen	offen	min.	max.	min.	max.			
130000	150000	1.4	-	0.05	-	0.04	-	F 681
100000	120000	1.8	-	0.10	-	0.14	-	F 691
110000	130000	2.0	-	0.10	-	0.12	-	MF 41X
100000	120000	1.9	2.1	0.05	0.05	0.09	0.14	F 681X
85000	100000	2.7	2.5	0.15	0.15	0.21	0.28	F 691X
75000	90000	2.7	3.0	0.15	0.15	0.42	0.52	F 601X
85000	100000	2.6	2.7	0.08	0.08	0.16	0.22	F 682
85000	100000	2.8	2.7	0.10	0.10	0.21	0.27	MF 52B
75000	90000	3.2	3.0	0.15	0.15	0.35	048	F 692
75000	90000	3.2	-	0.15	-	0.36	-	MF 62
63000	75000	3.2	3.8	0.15	0.15	0.52	0.56	MF 72
63000	75000	3.2	3.8	0.15	0.15	0.60	0.71	F 602
71000	80000	3.1	3.7	0.08	0.08	0.25	0.36	F 682X
63000	67000	3.7	3.8	0.15	0.15	0.51	0.68	F 692X
60000	71000	4.1	-	0.20	-	0.62	-	MF 82X
60000	71000	3.7	4.1	0.15	0.15	0.74	0.98	F 602X
71000	80000	3.8	3.7	0.10	0.10	0.27	0.33	MF 63
63000	75000	3.8	4.0	0.10	0.10	0.37	0.53	F 683A
60000	67000	4.2	-	0.15	-	0.56	-	MF 83
60000	67000	4.2	4.3	0.15	0.15	0.70	0.97	F 693
56000	67000	4.6	4.3	0.20	0.20	0.81	1.34	MF 93
56000	67000	4.2	4.3	0.15	0.15	1.00	1.63	F 603
50000	60000	4.2	4.3	0.15	0.15	1.85	1.86	F 623
40000	48000	4.6	6.0	0.20	0.20	3.73	3.59	F 633
60000	67000	4.8	-	0.10	-	0.29	-	MF 74
60000	71000	-	4.8	-	0.10	-	0.35	MF 74
56000	67000	5.2	5.0	0.15	0.15	0.44	0.63	MF 84
53000	63000	1.8	5.2	0.10	0.10	0.70	1.14	F 684
50000	60000	5.6	5.9	0.20	0.20	1.13	1.59	MF 104B
48000	56000	5.2	5.6	0.15	0.15	1.91	1.96	F 694
48000	56000	5.6	5.6	0.20	0.20	2.53	2.53	F 604
40000	48000	5.6	6.0	0.20	0.20	3.38	3.53	F 624
36000	43000	6.0	7.5	0.30	0.30	5.73	5.65	F 634

Einreihige Miniaturkugellager mit Flansch metrisch

Serie F6.../ MF

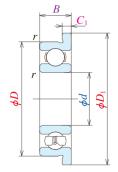


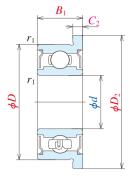



Lage	r-Bezeichnung	g		Dimensionen										Standard Traglasten	
Offen	ZZ	2RS	d	D	D ₁	D ₂	В	B ₁	C ₁	C ₂	r*	r ₁ *	Cr	Cor	
MF 85	-	-	5	8	9.2	-	2	-	0.6	-	0.10	-	326	126	
-	MF 85 ZZ	-		8	-	9.2	-	2.5	-	0.6	-	0.10	292	138	
MF 95	MF 95 ZZ1	-		9	10.2	10.2	2.5	3	0.6	0.6	0.15	0.15	452	176	
MF 105	MF 105 ZZ	-		10	11.2	11.6	3	4	0.6	0.8	0.15	0.15	452	176	
F 685	F 685 ZZ	-		11	12.5	12.5	3	5	0.8	1	0.15	0.15	751	295	
F 695	F 695 ZZ	2RS		13	15	15	4	4	1	1	0.20	0.20	1134	452	
F 605	F 605 ZZ	2RS		14	16	16	5	5	1	1	0.20	0.20	1397	530	
F 625	F 625 ZZ1	2RS		16	18	18	5	5	1	1	0.30	0.30	1817	704	
F 635	F 635 ZZ1	2RS		19	22	22	6	6	1.5	1.5	0.30	0.30	2457	929	
MF 106	MF 106 ZZ1	-	6	10	11.2	11.2	2.5	3	0.6	0.6	0.15	0.10	520	229	
MF 126	MF 126 ZZ	2RS		12	13.2	13.6	3	4	0.6	0.8	0.20	0.15	751	307	
F 686A	F 686A ZZ	2RS		13	15	15	3.5	5	1	1	0.15	0.15	1134	462	
F 696	F 696 ZZ1	2RS		15	17	17	5	5	1.2	1.2	0.20	0.20	1817	704	
F 606	F 606 ZZ	2RS		17	19	19	6	6	1.2	1.2	0.30	0.30	2373	877	
F 626	F 626 ZZ1	2RS		19	22	22	6	6	1.5	1.5	0.30	0.30	2457	929	
F 636	F 636 ZZ	2RS		22	25	25	7	7	1.5	1.5	0.30	0.30	3465	1439	
MF 117	MF 117 ZZ	-	7	11	12.2	12.2	2.5	3	0.6	0.6	0.15	0.10	478	211	
MF 137	MF 137 ZZ	-		13	14.2	14.6	3	4	0.6	0.8	0.20	0.15	567	290	
F 687	F 687 ZZ1	2RS		14	16	16	3.5	5	1	1.1	0.15	0.15	1229	536	
F 697	F 697 ZZ1	2RS		17	19	19	5	5	1.2	1.2	0.30	0.30	1691	746	
F 607	F 607 ZZ1	2RS		19	22	22	6	6	1.5	1.5	0.30	0.30	2457	929	
F 627	F 627 ZZ	2RS		22	25	25	7	7	1.5	1.5	0.30	0.30	3465	1439	
MF 128	MF 128 ZZ1	-	8	12	13.2	13.6	2.5	3.5	0.6	0.6	0.15	0.10	572	288	
MF 148	MF 148 ZZ	2RS		14	15.6	15.6	3.5	4	0.8	0.8	0.20	0.15	861	404	
F 688A	F 688A ZZ1	2RS		16	18	18	4	5	1	1	0.20	0.20	1691	746	
F 698	F 698 ZZ	2RS		19	22	22	6	6	1.5	1.5	0.30	0.30	2352	956	
F 608	F 608 ZZ	2RS		22	25	25	7	7	1.5	1.5	0.30	0.30	3465	1439	
F 689	F 689 ZZ	2RS	9	17	19	19	4	5	1	1	0.20	0.20	1397	698	
F 699	F 699 ZZ1	2RS		20	23	23	6	6	1.5	1.5	0.30	0.30	1806	882	

Nwerte in Klammern basieren nicht auf ISO 15 Standard.
 Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.

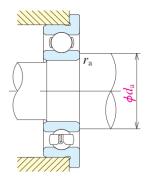
^{3.} Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

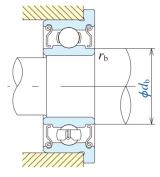




max	. Drehza	hlen					Gew	vicht	
Fett		Öl	d _a	d _b	r _a	r _b	offen	ZZ	
offen	2RS	offen	min.	max.	min.	max.			
53000	-	63000	5.8	-	0.10	-	0.33	-	MF 85
53000	-	63000	-	5.8	-	0.10	-	0.41	MF 85
50000	-	60000	6.2	6.0	0.15	0.15	0.59	0.66	MF 95
50000	-	60000	6.2	6.0	0.15	0.15	1.05	1.46	MF 105
45000	-	53000	6.2	6.2	0.15	0.15	1.37	2.18	F 685
43000	40000	50000	6.6	6.6	0.20	0.20	2.79	2.84	F 695
40000	38000	50000	6.6	6.9	0.20	0.20	3.90	3.85	F 605
36000	32000	43000	7.0	7.5	0.30	0.30	5.37	5.30	F 625
32000	30000	40000	7.0	8.5	0.30	0.30	9.49	9.49	F 635
45000	-	53000	7.2	7.0	0.15	0.10	0.65	0.77	MF 106
43000	40000	50000	7.6	7.2	0.20	0.15	1.38	1.94	MF 126
40000	38000	50000	7.2	7.4	0.15	0.15	2.25	3.04	F 686A
40000	36000	45000	7.6	7.9	0.20	0.20	4.34	4.26	F 696
38000	34000	45000	8.0	8.2	0.30	0.30	6.58	6.61	F 606
32000	30000	40000	8.0	8.5	0.30	0.30	9.09	9.09	F 626
30000	28000	36000	8.0	10.5	0.30	0.30	14.60	14.70	F 636
43000	-	50000	8.2	8.0	0.15	0.10	0.72	0.82	MF 117
40000	-	48000	8.6	9.0	0.20	0.15	1.70	2.23	MF 137
40000	34000	45000	8.2	8.5	0.15	0.15	2.48	3.37	F 687
36000	28000	43000	9.0	10.2	0.30	0.30	5.65	5.65	F 697
36000	32000	43000	9.0	9.1	0.30	0.30	8.66	8.66	F 607
30000	28000	36000	9.0	10.5	0.30	0.30	14.20	14.20	F 627
40000	-	48000	9.2	9.0	0.15	0.10	0.82	1.15	MF 128
38000	32000	45000	9.6	9.2	0.20	0.15	2.09	2.39	MF 148
36000	30000	43000	9.6	10.2	0.20	0.20	3.54	4.47	F 688A
36000	28000	43000	10.0	10.0	0.30	0.30	8.35	8.30	F 698
34000	28000	40000	10.0	10.5	0.30	0.30	13.40	13.50	F 608
36000	24000	43000	10.6	11.5	0.20	0.20	3.97	4.91	F 689
36000	24000	40000	11.0	12.0	0.30	0.30	9.51	9.51	F 699

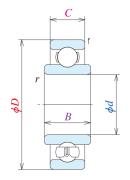
Einreihige Miniaturkugellager mit Flansch zoll




Serie FR...

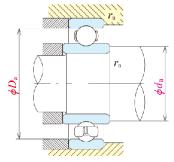
Lager-E	Bezeichnung				Dimen	sionen				Standard Traglasten	
Offen	ZZ	d	D	D ₁	В	B ₁	C ₁	C ₂	r	Cr	Cor
FR 0	FR 0 ZZ	1.191	3.967	5.156	1.588	2.380	0.330	0.790	0.10	1449	37
FR 1	FR 1 ZZ	1.397	4.762	5.944	1.984	2.779	0.580	0.790	0.10	243	69
FR 1-4	FR 1-4 ZZ	1.984	6.350	7.518	2.380	3.571	0.580	0.790	0.10	326	113
FR 133	-	2.380	4.762	5.944	1.588	-	0.460	-	0.10	197	63
-	FR 133 ZZ		4.762	5.944	-	2.380	-	0.790	0.10	150	55
FR 1-5	FR 1-5 ZZ		7.938	9.119	2.779	3.571	0.580	0.790	0.15	578	184
FR 144	FR 144 ZZ	3.175	6.350	7.518	2.380	2.779	0.580	0.790	0.10	297	100
FR 2-5	FR 2-5 ZZ		7.938	9.119	2.779	3.571	0.580	0.790	0.10	588	188
FR 2-6	FR 2-6 ZZ		9.525	10.719	2.779	3.571	0.580	0.790	0.15	672	236
FR 2	FR 2 ZZ		9.525	11.176	3.967	3967	0.760	0.760	0.30	662	229
FR 155	FR 155 ZZ	3.967	7.938	9.119	2.779	3.175	0.580	0.910	0.10	378	156
FR 156	FR 156 ZZ	4.762	7.938	9.119	2.779	3.175	0.580	0.910	0.10	378	156
FR 166	FR 166 ZZ		9.525	10.716	3.175	3.175	0.580	0.790	0.10	746	284
FR 3	FR 3 ZZ		12.700	14.351	4.978	4.978	1.070	1.070	0.30	1365	510
FR 168B	FR 168B ZZ	6.350	9.525	10.716	3.175	3.175	0.580	0.910	0.10	441	214
FR 188	FR 188 ZZ		12.700	13.864	3.175	4.762	0.580	1.140	0.15	1134	462
FR 4B	FR 4B ZZ		15.875	17.526	4.978	4.978	1.070	1.070	0.30	1691	693
FR 1810	FR 1810 ZZ	7.938	12.700	13.894	3.967	3.967	0.790	0.790	0.15	567	290
FR 6	FR 6 ZZ	9.525	22.225	24.613	7.142	7.142	1.570	1.570	0.40	3518	1481

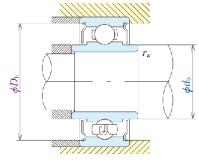
^{1.} Werte in Klammern basieren nicht auf ISO 15 Standard.
2. Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.


^{3.} Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

max. Dre	hzahlen				Gew	icht	
Fett	Öl	d _a	d _b	r _a	offen	ZZ	
offen	offen	min.	max.	max.			
110000	130000	2.0	1.9	0.10	0.11	0.16	FR 0
90000	110000	2.2	2.3	0.10	0.20	0.25	FR 1
67000	80000	2.8	3.9	0.10	0.41	0.58	FR 1-4
80000	95000	3.2	-	0.10	0.13	-	FR 133
80000	95000	-	3.0	0.10	-	0.19	FR 133
60000	71000	3.6	4.1	0.15	0.68	0.82	FR 1-5
67000	80000	4.0	3.9	0.10	0.31	0.35	FR 144
60000	67000	4.0	4.3	0.10	0.62	0.81	FR 2-5
53000	63000	4.4	4.6	0.15	1.04	1.25	FR 2-6
56000	67000	5.2	4.8	0.30	1.51	1.55	FR 2
53000	63000	4.8	5.5	0.10	0.59	067	FR 155
53000	63000	5.6	5.5	0.10	0.47	0.53	FR 156
50000	60000	5.6	5.9	0.10	0.90	0.98	FR 166
43000	53000	6.8	6.5	0.30	2.97	3.09	FR3
48000	56000	7.2	7.0	0.10	0.66	0.75	FR 168B
40000	50000	7.6	7.4	0.15	1.64	2.49	FR 188
38000	45000	8.4	8.4	0.30	4.78	4.78	FR 4B
40000	48000	9.2	9.0	0.15	1.71	1.63	FR 1810
32000	38000	12.6	11.9	0.40	10.10	12.10	FR 6

Einreihige Miniaturkugellager mit verbreitertem Innenring zoll

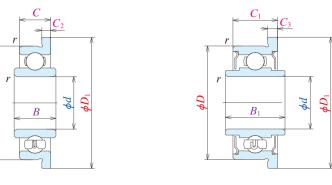

Serie RW...


Lager-B	ezeichnung			D	imensione	en			Standard ⁻	Traglasten
Offen	ZZ	d	D	В	B ₁	С	C ₁	r	Cr	Cor
RW 09	-	1.016	3.175	1.984	-	1.191	-	0.10	84	24
RW 0	RW 0 ZZ	1.191	3.967	2.380	3.175	1.588	2.380	0.10	145	37
RW 1	RW 1 ZZ	1.397	4.762	2.779	3.571	1.984	2.779	0.10	243	69
RW 1-4	RW 1-4 ZZ	1.984	6.350	3.175	4.366	2.380	3.571	0.10	326	113
RW 133	-	2.380	4.762	2.380	-	1.588	-	0.10	197	63
-	RW 133 ZZ		4.762	-	3.175	-	2.380	0.10	150	55
RW 1-5	RW 1-5 ZZ		7.938	3.571	4.366	2.779	3.571	0.15	578	184
RW 144	RW 144 ZZ	3.175	6.350	3.175	3.571	2.380	2.779	0.10	297	100
RW 2-5	RW 2-5 ZZ		7.938	3.571	4.366	2.779	3.571	0.10	588	188
RW 2-6	RW 2-6 ZZ		9.525	3.571	4.366	2.779	3.571	0.15	672	236
RW 2	RW 2 ZZ		9.525	4.762	4.762	3.967	3.967	0.30	662	229
RW 155	RW 155 ZZ	3.967	7.938	3.571	3.967	2.779	3.175	0.10	378	156
RW 156	RW 156 ZZ	4.762	7.938	3.571	3.967	2.779	3.175	0.10	378	156
RW 166	RW 166 ZZ		9.525	3.967	3.967	3.175	3.175	0.10	746	284
RW 3	RW 3 ZZ		12.700	4.762	5.771	3.967	4.978	0.30	1365	509
RW 168B	RW 168B ZZ	6.350	9.525	3.967	3.967	3.175	3.175	0.10	441	214
RW 188	RW 188 ZZ		12.700	3.967	5.558	3.175	4.762	0.15	1134	462
RW 4B	RW 4B ZZ		15.875	5.771	5.771	4.978	4.978	0.30	1691	693
RW 1810	RW 1810 ZZ	7.938	12.700	4762	4.762	3.967	3.967	0.15	567	290
RW 6	-	9.525	22.225	7.142	-	5.558	-	0.40	3518	1481

^{1.} Werte in Klammern basieren nicht auf ISO 15 Standard.

^{2.} Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.

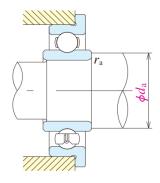
^{3.} Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

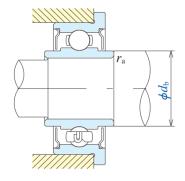


max. Dre	ehzahlen						Gew	richt	
Fett	Öl	d _a	d _b	D _a	D_{b}	r _b	offen	ZZ	
offen	offen	min.	max.	min.	max.	max.			
130000	150000	1.9	-	2.3	-	0.10	0.05	-	RW 09
110000	130000	2.0	1.9	3.1	3.5	0.10	0.11	0.16	RW 0
90000	110000	2.2	2.3	3.9	4.1	0.10	0.17	0.24	RW 1
67000	80000	2.8	3.9	5.5	5.9	0.10	0.46	0.46	RW 4-4
80000	95000	3.2	-	3.9	-	0.10	0.12	-	RW 133
80000	95000	-	3.0	-	4.2	0.10	-	0.17	RW 133
60000	71000	3.6	4.1	6.7	7.0	0.15	0.63	0.73	RW 1-5
67000	80000	4.0	3.9	5.5	5.9	0.10	0.30	0.33	RW 144
60000	67000	4.0	4.3	7.1	7.3	0.10	0.74	0.74	RW 2-5
53000	63000	4.4	4.6	8.3	8.2	0.15	1.00	1.10	RW 2-6
56000	67000	5.2	4.8	7.5	8.0	0.30	1.40	1.30	RW 2
53000	63000	4.8	5.5	7.1	7.3	0.10	0.56	0.62	RW 155
53000	63000	5.6	5.5	7.1	7.3	0.10	0.44	0.49	RW 156
50000	60000	5.6	5.9	8.7	8.8	0.10	0.82	0.87	RW 166
43000	53000	6.8	6.5	10.7	11.2	0.30	2.33	2.90	RW 3
48000	56000	7.2	7.0	8.7	8.9	0.10	0.62	0.66	RW 168B
40000	50000	7.6	7.4	11.5	11.6	0.15	1.70	2.10	RW 188
38000	45000	8.4	8.4	13.8	13.8	0.30	4.72	4.62	RW 4B
40000	48000	9.2	9.0	11.5	11.6	0.15	1.90	1.60	RW 1810
32000	38000	12.6	-	19.2	-	0.40	10.00	-	RW 6

Einreihige Miniaturkugellager mit verbreitertem Innenring und Flansch

zoll

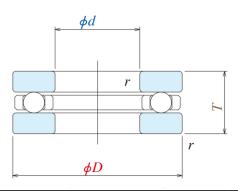

Serie FRW...



Lager-Be	zeichnung					Dimen	sionen					Standard Traglasten	
Offen	ZZ	d	D	D ₁	В	B ₁	С	C ₁	C ₂	C ₃	r ₁ *	Cr	Cor
FRW 0	FRW 0 ZZ	1.191	3.967	5.156	2.380	3.175	1.588	2.380	0.330	0.790	0.10	145	37
FRW 1	FRW 1 ZZ	1.397	4.762	5.944	2.779	3.571	1.984	2.779	0.580	0.790	0.10	243	69
FRW 1-4	FRW 1-4 ZZ	1.984	6.350	7.518	3.175	4.366	2.380	3.571	0.580	0.790	0.10	326	113
FRW 133	-	2.380	4.762	5.944	2.380	-	1.588	-	0.460	-	0.10	198	63
-	FRW 133 ZZ		4.762	5.944	-	3.175	-	2.380	-	0.790	0.10	150	55
FRW 1-5	FRW 1-5 ZZ		7.938	9.119	3.571	4.366	2.779	3.571	0.580	0.790	0.15	578	184
FRW 144	FRW 144 ZZ	3.175	6.350	7.518	3.175	3.571	2.380	2.779	0.580	0.790	0.10	297	100
FRW 2-5	FRW 2-5 ZZ		7.983	9.119	3.571	4.366	2.779	3.571	0.580	0.790	0.10	588	188
FRW 2-6	FRW 2-6 ZZ		9.525	10.719	3.571	4.366	2.779	3.571	0.580	0.790	0.15	672	236
FRW 2	FRW 2 ZZ		9.525	11.176	4.762	4.762	3.967	3.967	0.760	0.760	0.30	662	229
FRW 155	FRW 155 ZZ	3.967	7.938	9.119	3.571	3.967	2.779	3.175	0.580	0.910	0.10	378	156
FRW 156	FRW 156 ZZ	4.762	7.938	9.119	3.571	3.967	2.779	3.175	0.580	0.910	0.10	378	156
FRW 166	FRW 166 ZZ		9.525	10.719	3.967	3.967	3.175	3.175	0.580	0.790	0.10	746	284
FRW 3	FRW 3 ZZ		12.700	14.351	4.762	5.771	3.967	4.978	1.070	1.070	0.30	1365	509
FRW 168B	FRW 168B ZZ	6.350	9.525	10.719	3.967	3.967	3.175	3.175	0.580	0.910	0.10	441	214
FRW 188	FRW 188 ZZ		12.70	13.894	3.967	5.558	3.175	4.762	0.580	1.140	0.15	1134	462
FRW 4B	FRW 4B ZZ		15.875	17.526	5.771	5.771	4.978	4.978	1.070	1.070	0.30	1691	693
FRW 1810	FRW 1810 ZZ	7.938	12.700	13.894	4.762	4.762	3.967	3.967	0.790	0.790	0.15	567	290

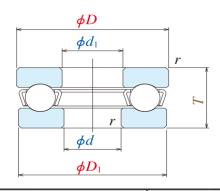
 ^{1.} Werte in Klammern basieren nicht auf ISO 15 Standard.
 2. Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.

^{3.} Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.



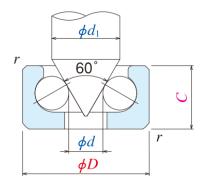
max. Dre	ehzahlen				Gew	icht	
Fett	Öl	d _a	d _b	r _a	offen	ZZ	
offen	offen	min.	max.	max.			
110000	130000	2.0	1.9	0.10	0.14	0.19	FRW 0
90000	110000	2.2	2.3	0.10	0.24	0.32	FRW 1
67000	80000	2.8	3.9	0.10	0.59	0.59	FRW 1-4
80000	95000	3.2	-	0.10	0.17	-	FRW 133
80000	95000	-	3.0	0.10	-	0.22	FRW 133
60000	71000	3.6	4.1	0.15	0.83	0.93	FRW 1-5
67000	80000	4.0	3.9	0.10	0.44	0.47	FRW 144
60000	67000	4.0	4.3	0.10	0.93	0.93	FRW 2-5
53000	63000	4.4	4.6	0.15	1.30	1.40	FRW 2-6
56000	67000	5.2	4.8	0.30	1.80	1.70	FRW 2
53000	63000	4.8	5.5	0.10	0.73	0.79	FRW 155
53000	63000	5.6	5.5	0.10	0.58	0.63	FRW 156
50000	60000	5.6	5.9	0.10	1.20	1.20	FRW 166
43000	53000	6.8	6.5	0.30	3.10	3.20	FRW 3
48000	56000	7.2	7.0	0.10	0.7	0.79	FRW 168B
40000	50000	7.6	7.4	0.15	2.10	2.50	FRW 188
38000	45000	8.4	8.4	0.30	5.08	4.98	FRW 4B
40000	48000	9.2	9.0	0.15	2.30	2.10	FRW 1810

Axial-Kugellager ohne Laufbahn

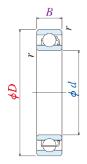

Serie F

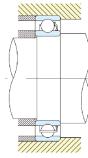
Lager-Bezeichnung		Dimen	sionen		Standard	Traglasten
	d	D	Т	r _{min}	Cr	Cor
F 2-6	2	6	3.0	0.10	150	87
F 2X-7	2.5	7	3.5	0.10	209	126
F 3-8	3	8	3.5	0.15	223	147
F 4-9	4	9	4.0	0.15	323	168
F 4-10	4	10	4.5	0.15	373	257
F 5-11	5	11	4.5	0.15	357	257
F 6-12	6	12	4.5	0.15	410	331
F 7-15	7	15	5.0	0.20	803	661
F 8-16	8	16	5.0	0.20	562	467
F 9-17	9	17	5.0	0.20	856	746
F 10-18	10	18	5.5	0.20	840	746

Axial-Kugellager mit Laufbahn


Serie F-M

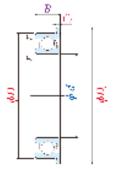
Lager-Bezeichnung			D	imensione	n			Standard [*]	Traglasten
	d	d ₁	D	D ₁	Т		Kugel- durchmes- ser	Cr	Cor
F 3-7 M	3	3.2	7	6.8	3	6	1.2	522	462
F 3-8 M	3	3.2	8	7.8	3.5	6	1.588	902	810
F 4-9 M	4	4.2	9	8.8	4	6	1.588	857	810
F 4-10 M	4	4.2	10	9.8	4	6	1.588	839	810
F 5-10 M	5	5.2	10	9.8	4	9	1.588	1076	1214
F 5-12 M	5	5.2	12	11.8	4	8	1.588	958	1079
F 6-12 M	6	6.2	12	11.8	4.5	9	2	1658	1927
F 6-14 M	6	6.25	14	13.8	5	7	2.381	1977	2124
F 7-15 M	7	7.2	15	14.8	5.5	9	3	3658	4334
F 7-17 M	7	7.2	17	16.8	6	8	2.778	2777	3303
F 8-19 M	8	8.2	19	18.8	7	8	3.175	3569	4316
F 9-17 M	9	9.2	17	16.8	5	9	3	3479	4334
F 9-20 M	9	9.2	20	19.8	7	8	3.178	3493	4316
F 10-20 M	10	10.2	20	19.8	6.5	10	3.5	4942	6555


Pivot-Lager


BCF

Lager-Bezeichnung			Standard Traglasten				
	d	d ₁	D	С	r _{min}	Cr	Cor
BCF 3	0.81	1	3	1.5	0.1	33	7
BCF 4X	1.31	1.5	4	2.2	0.15	60	14
BCF 5	1.58	1.8	5	2.4	0.15	83	20
BCF 6	1.60	1.9	6	2.5	0.15	112	28
BCF 7	2.09	2.3	7	3	0.2	138	36
BCF 8	2.40	2.7	8	3.5	0.3	233	65
BCF 9	3.13	3.5	9	3.5	0.2	287	79
BCF 10	3.13	3.5	10	4	0.2	483	79
BCF 12	4.18	4.6	12	4.5	0.2	452	141
BCF 12X	6.09	6.8	12	3.5	0.2	562	137
BCF 13	5.16	5.7	13	4.5	0.2	562	167
BCF 14	6.13	6.8	14	4.5	0.3	630	192
BCF 16	8.12	9	16	4.5	0.3	756	244

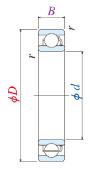
Dünnring-Rillenkugellager metrisch

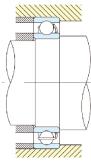


											(/////////	
Lage	r-Bezeichn	nung		Dimen	sionen		Standard	l Traglas-	max. Dre	ehzahlen	Gewicht	
							te	n				
Offen	ZZ	2RS	d	D	В	r ₁	Cr	Cor	Fett	Öl	ZZ	
6700		2RS	10	15.0	3.0	0.15	898	457	15000	17000	-	6700
-	6700 ZZS	-		15.0	4.0	0.15	898	457	15000	17000	1.9	6700
6800	6800 ZZ	2RS		19.0	5.0	0.30	1802	882	37000	43000	5.6	6800
63800	63800 ZZ	2RS		19.0	7.0	0.30	1802	882	37000	43000	7.4	63800
6900	6900 ZZ	2RS		22.0	6.0	0.30	2830	1337	34000	41000	10.0	6900
6701	6701 ZZS	2RS	12	18.0	4.0	0.20	972	557	13000	15000	3.1	6701
6801	6801 ZZ	2RS		21.0	5.0	0.30	2011	1093	33000	39000	6.5	6801
63801	63801 ZZ	2RS		21.0	7.0	0.30	2011	1093	33000	39000	8.5	63801
6901	6901 ZZ	2RS		24.0	6.0	0.30	3030	1539	31000	36000	12.0	6901
6702	6702 ZZS	2RS	15	21.0	4.0	0.20	984	611	11000	13000	3.6	6702
6802	6802 ZZ	2RS		24.0	5.0	0.30	2177	1316	28000	33000	7.6	6802
63802	63802 ZZ	2RS		24.0	7.0	0.30	2177	1316	28000	33000	10.0	63802
6902	6902 ZZ	2RS		28.0	7.0	0.30	4537	2372	26000	30000	19.0	6902
6703	6703 ZZS	2RS	17	23.0	4.0	0.20	1050	691	9500	11000	4.0	6703
6803	6803 ZZ	2RS		26.0	5.0	0.30	2345	1529	26000	30000	8.2	6803
63803	63803 ZZ	2RS		26.0	7.0	0.30	2345	1529	26000	30000	11.0	63803
6903	6903 ZZ	2RS		30.0	7.0	0.30	4817	2693	23000	38000	20.0	6903
6704	6704 ZZS	2RS	20	27.0	4.0	0.20	1472	765	8500	10000	5.9	6704
6804	6804 ZZ	2RS		32.0	7.0	0.30	4216	2585	21000	25000	18.0	6804
63804	63804 ZZ	2RS		32.0	10.0	0.30	4216	2585	21000	25000	24.0	63804
6904	6904 ZZ	2RS		37.0	9.0	0.30	6700	3866	19000	23000	40.0	6904
6705	6705 ZZS	2RS	25	32.0	4.0	0.20	1146	880	7000	80000	7.1	6705
6805	6805 ZZ	2RS		37.0	7.0	0.30	4518	3079	18000	21000	24.0	6805
63805	63805 ZZ	2RS		37.0	10.0	0.30	4518	3079	18000	21000	32.0	63805
6905	6905 ZZ	2RS		42.0	9.0	0.30	7351	4767	16000	19000	47.0	6905
9706	9706 ZZS	-	30	37.0	4.0	0.20	1200	994	5500	7000	8.3	6706
6806	6806 ZZ	2RS		42.0	7.0	0.30	4765	3572	15000	18000	27.0	6806
63806	63806 ZZ	2RS		42.0	10.0	0.30	4765	3572	15000	18000	36.0	63806
6906	6906 ZZ	2RS		47.0	90	0.30	7604	5253	14000	17000	53.0	6906

Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.
 Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

Dünnring-Rillenkugellager mit Flansch metrisch

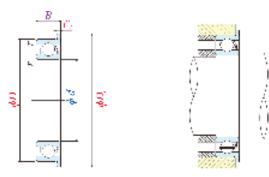




Lan	er-Bezeichn	una			Dimen	sione	n		Standa	rd Trag-	max Dre	ehzahlen	Gewicht	2,.24
Lag	er bezeienn	ung			Jimen	Sioric				ten	max. Div	Zariicii	dewicht	
Offen	ZZ	2RS	d	D	D ₁	В	C ₁	r	Cr	Cor	Fett	Öl	ZZ	
F 6700		2RS	10	15.0	16.5	3.0	0.8	0.15	898	457	15000	17000	-	F 6700
-	F 6700 ZZS	-		15.0	16.5	4.0	0.8	0.15	898	457	15000	17000	1.6	-
F 6800	F 6800 ZZ	2RS		19.0	21.0	5.0	1.0	0.30	1802	882	37000	43000	2.1	F 6800
F 63800	F 63800 ZZ	2RS		19.0	21.0	7.0	1.5	0.30	1802	882	37000	43000	8.1	F 63800
F 6900	F 6900 ZZ	2RS		22.0	25.0	6.0	1.5	0.30	2830	1337	34000	41000	11.3	F 6900
F 6701	F 6701 ZZS	2RS	12	18.0	19.5	4.0	8.0	0.20	972	557	13000	15000	3.4	F 6701
F 6801	F 6801 ZZ	2RS		21.0	23.0	5.0	1.1	0.30	2011	1093	33000	39000	7.1	F 6801
F 63801	F 63801 ZZ	2RS		21.0	23.0	7.0	1.5	0.30	2011	1093	33000	39000	9.3	F 63801
F 6901	F 6901 ZZ	2RS		24.0	26.5	6.0	1.5	0.30	3030	1539	31000	36000	13.2	F 6901
F 6702	F 6702 ZZS	2RS	15	21.0	22.5	4.0	0.8	0.20	984	611	11000	13000	3.9	F 6702
F 6802	F 6802 ZZ	2RS		24.0	26.0	5.0	1.1	0.30	2177	1316	28000	33000	8.3	F 6802
F 63802	F 63802 ZZ	2RS		24.0	26.0	7.0	1.5	0.30	2177	1316	28000	33000	10.9	F 63802
F 6902	F 6902 ZZ	2RS		28.0	30.5	7.0	1.5	0.30	4537	2372	26000	30000	19.9	F 6902
F 6703	F 6703 ZZS	2RS	17	23.0	24.5	4.0	0.8	0.20	1050	691	9500	11000	4.4	F 6703
F 6803	F 6803 ZZ	2RS		26.0	28.0	5.0	1.1	0.30	2345	1529	26000	30000	8.9	F 6803
F 63803	F 63803 ZZ	2RS		26.0	28.0	7.0	1.5	0.30	2345	1529	26000	30000	12.0	F 63803
F 6903	F 6903 ZZ	2RS		30.0	32.5	7.0	1.5	0.30	4817	2693	23000	38000	19.9	F 6903
F 6704	F 6704 ZZS	2RS	20	27.0	28.5	4.0	8.0	0.20	1472	765	8500	10000	6.3	F 6704
F 6804	F 6804 ZZ	2RS		32.0	35.0	7.0	1.5	0.30	4216	2585	21000	25000	19.8	F 6804
F 63804	F 63804 ZZ	2RS		32.0	35.0	10.0	2.0	0.30	4216	2585	21000	25000	26.5	F 63804
F 6904	F 6904 ZZ	2RS		37.0	40.0	9.0	2.0	0.30	6700	3866	19000	23000	42.8	F 6904
F 6705	F 6705 ZZS	2RS	25	32.0	34.0	4.0	1.0	0.20	1146	880	7000	80000	7.9	F 6705
F 6805	F 6805 ZZ	2RS		37.0	40.0	7.0	1.5	0.30	4518	3079	18000	21000	26.1	F 6805
F 63805	F 63805 ZZ	2RS		37.0	40.0	10.0	2.0	0.30	4518	3079	18000	21000	34.1	F 63805
F 6905	F 6905 ZZ	2RS		42.0	45.0	9.0	2.0	0.30	7351	4767	16000	19000	50.2	F 6905
F 9706	F 9706 ZZS	-	30	37.0	39.0	4.0	1.0	0.20	1200	994	5500	7000	9.2	F 9706
F 6806	F 6806 ZZ	2RS		42.0	45.0	7.0	1.5	0.30	4765	3572	15000	18000	29.4	F 6806
F 63806	F 63806 ZZ	2RS		42.0	45.0	10.0	2.0	0.30	4765	3572	15000	18000	39.2	F 63806
F 6906	F 6906 ZZ	2RS		47.0	50.0	90	2.0	0.30	7604	5253	14000	17000	56.6	F 6906

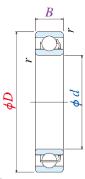
Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.
 Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

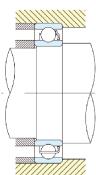
Dünnring-Rillenkugellager metrisch



Lager	-Bezeichn	ung		Dimen	sionen		Standard ⁻	Traglasten	max. Dre	hzahlen	Gewicht	
Offen	ZZ	2RS	d	D	В	r ₁	Cr	Cor	Fett	Öl	ZZ	
6707		2RS	35	44.0	5.0	0.3	1959	1717	4900	6000	15.0	6707
6807	6807 ZZ	2RS		47.0	7.0	0.3	4965	4012	13000	16000	32.0	6807
6907	6907 ZZ	2RS		55.0	10.0	0.6	11445	8209	12000	14000	87.0	6907
6708		2RS	40	50.0	6.0	0.3	2642	2345	4300	5000	23.0	6708
6808	6808 ZZ	2RS		52.0	7.0	0.3	5169	4387	12000	14000	35.0	6808
6908	6908 ZZ	2RS		62.0	12.0	0.6	14362	10466	11000	13000	131.0	6908
6709		2RS	45	55.0	6.0	0.3	2709	2517	3900	4600	25.0	6709
6809	6809 ZZ	2RS		58.0	7.0	0.3	6496	5650	11000	13000	42.0	6809
6909	6909 ZZ	2RS		68.0	12.0	0.6	14805	11371	9700	11000	147.0	6909
6710		2RS	50	62.0	6.0	0.3	2804	2772	3500	4100	64.0	6710
6810	6810 ZZ	2RS		65.0	7.0	0.3	6941	6395	9600	11000	52.0	6810
6910	6910 ZZ	2RS		72.0	12.0	0.6	15267	12296	9000	11000	133.0	6910
6811	6811 ZZ	2RS	55	72.0	9.0	0.3	9240	8505	8700	10000	83.0	6811
6911	6911 ZZ	2RS		80.0	13.0	1.0	17430	14805	8100	96000	185.0	6911
6812	6812 ZZ	2RS	60	78.0	10.0	0.3	12075	11130	8000	9400	104.0	6812
6912	6912 ZZ	2RS		85.0	13.0	1.0	21210	18165	7500	8900	192.0	6912
6813	6813 ZZ	2RS	65	85.0	10.0	0.6	12495	12075	7300	8600	126.0	6813
6913	6913 ZZ	2RS		90.0	13.0	1.0	18270	16905	7100	8400	211.0	6913
6814	6814 ZZ	2RS	70	90.0	10.0	0.6	12705	12495	6800	8100	134.0	6814
6914	6914 ZZ	2RS		100.0	16.0	1.0	24885	22260	6400	7600	342.0	6914
6815	6815 ZZ	2RS	75	95.0	10.0	0.6	13125	13545	12500	12900	142.0	6815
6915	6915 ZZ	2RS		105.0	16.0	1.0	25620	23730	6100	7200	363.0	6915
6816	6816 ZZ	2RS	80	100.0	10.0	0.6	13335	13965	12700	13300	150.0	6816
6916	6916 ZZ	2RS		110.0	16.0	1.0	26250	25200	5700	6800	3825.0	6916
6817	6817 ZZ	2RS	85	110.0	13.0	1.0	19635	19950	5600	6600	266.0	6817
6917	6917 ZZ	2RS		120.0	18.0	1.1	33495	31080	5300	6300	535.0	6917
6818	6818 ZZ	2RS	90	115.0	13.0	1.0	19950	20685	5300	6300	279.0	6818
6918	6918 ZZ	2RS		125.0	18.0	1.1	34440	33180	5100	6000	565.0	6918

Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.
 Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

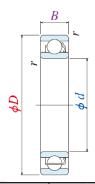

Dünnring-Rillenkugellager mit Flansch metrisch

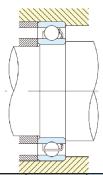


Lag	er-Bezeichnı	ung		ı	Dimen	sioner	า			dard asten	max. Dre	ehzahlen	Gewicht	
Offen	ZZ	2RS	d	D	D ₁	В	C ₁	r ₁	Cr	Cor	Fett	Öl	ZZ	
F 6807	F 6807 ZZ	2RS	35	47.0	50.0	7.0	1.5	0.3	4965	4012	13000	16000	34.7	F 6807
F 6907	F 6907 ZZ	2RS		55.0	58.0	10.0	2.5	0.6	11445	8209	12000	14000	92.2	F 6907
F 6808	F 6808 ZZ	2RS	40	52.0	55.0	7.0	1.5	0.3	5169	4387	12000	14000	38.0	F 6808
F 6908	F 6908 ZZ	2RS		62.0	65.0	12.0	2.5	0.6	14362	10466	11000	13000	137.0	F 6908
F 6809	F 6809 ZZ	2RS	45	58.0	61.0	7.0	1.5	0.3	6496	5650	11000	13000	45.3	F 6809
F 6909	F 6909 ZZ	2RS		68.0	71.0	12.0	2.5	0.6	14805	11371	9700	11000	153.0	F 6909
F 6810	F 6810 ZZ	2RS	50	65.0	68.0	7.0	1.5	0.3	6941	6395	9600	11000	52.0	F 6810
F 6910	F 6910 ZZ	2RS		72.0	75.0	12.0	2.5	0.6	15267	12296	9000	11000	133.0	F 6910

Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.
 Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

ET-SERIE

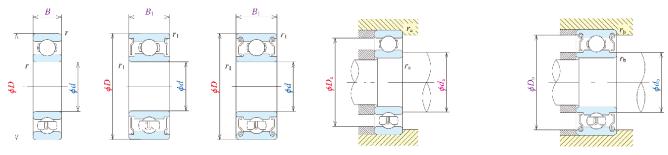




Lager-Bezeichnung		Dimensionen				Standard Traglasten		max. Drehzahlen		Gewicht		
Offen	ZZ	d	D	В	B ₁	r	Cr	Cor	Fett	Öl	ZZ	
ET 2015		15.0	20.0	3.5	-	0.15	989	611	22000	26000	2.10	ET 2015
ET 2115			21.0	3.5	-	0.15	986	610	22000	26000	2.43	ET 2115
ET 2216		16.0	22.0	4.0	-	0.15	1016	650	20000	24000	3.04	ET 2216
ET 2316	ET 2316 ZZS		23.0	4.5	4.5	0.15	1016	650	20000	24000	4.03	ET 2316
ET 2418		18.0	24.0	4.0	-	0.15	1037	687	18000	21000	4.25	ET 2418
ET 2520	ET 2520 ZZS	20.0	25.0	4.0	4.0	0.15	1062	726	17000	20000	3.55	ET 2520

Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen ZS oder TS.
 Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

ER-SERIE



Lager-Bezeichnung		Dimensionen					Standard Traglasten		max. Drehzahlen		Gewicht	
Offen	ZZ	d	D	В	B ₁	r _s	Cr	Cor	Fett	Öl	ZZ	
ER 1038	ER 1038 ZZS	9.525	15.875	3.967	3.967	0.25	899	457	30000	35000	2.71	ER 1038
ER 1212	ER 1212 ZZS	12.700	19.050	3.967	3.967	0.25	964	569	24000	28000	3.49	ER 1212
ER 1458	ER 1458 ZZS	15.875	22.225	3.967	3.967	0.25	1035	650	20000	24000	4.18	ER 1458
ER 1634	ER 1634 ZZS	19.050	25.400	3.967	3.967	0.25	1062	726	17000	20000	5.02	ER 1634

^{1.} Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen ZS oder TS. 2. Lager sind auch mit rostfreiem Material verfügbar: Vorsetzzeichen S oder SS.

Inox-Rillenkugellager

Lag	jer-Bezeichnu	ıng	Dimensionen			Standa las	rd Trag- ten	max. Dre	ehzahlen	Gewicht		
Offen	ZZ	2RS	d	D	В	r ₁	Cr	Cor	Fett	Öl	ZZ	
SS 6000	SS 6000 ZZ	2RS	10.0	26.0	8.0	0.3	4053	1649	31000	36000	19	SS 6000
SS 6200	SS 6200 ZZ	2RS		30.0	9.0	0.6	4557	2016	24000	29000	32	SS 6200
SS 6300	SS 6300 ZZ	2RS		35.0	11.0	0.6	7214	2888	22000	27000	53	SS 6300
SS 6001	SS 6001 ZZ	2RS	12.0	28.0	8.0	0.3	4557	2006	27000	32000	22	SS 6001
SS 6201	SS 6201 ZZ	2RS		32.0	10.0	0.6	6059	2573	22000	27000	37	SS 6201
SS 6301	SS 6301 ZZ	2RS		37.0	12.0	1.0	8652	3528	20000	25000	60	SS 6301
SS 6002	SS 6002 ZZ	2RS	15.0	32.0	9.0	0.3	4988	2384	23000	27000	30	SS 6002
SS 6202	SS 6202 ZZ	2RS		35.0	11.0	0.6	6815	3150	20000	24000	45	SS 6202
SS6302	SS 6302 ZZ	2RS		42.0	13.0	1.0	10196	4589	17000	20000	82	SS 6302
SS 6003	SS 6003 ZZ	2RS	17.0	35.0	10.0	0.3	5345	2762	21000	25000	39	SS 6003
SS 6203	SS 6203 ZZ	2RS		40.0	12.0	0.6	8537	4043	17000	21000	65	SS 6203
SS 6303	SS 6303 ZZ	2RS		47.0	14.0	1.0	12128	5597	15000	18000	115	SS 6303
SS 6004	SS 6004 ZZ	2RS	20.0	42.0	12.0	0.6	8358	4253	17000	21000	69	SS 6004
SS 6204	SS 6204 ZZ	2RS		47.0	14.0	1.0	11456	5628	15000	17000	106	SS 6204
SS 6304	SS 6304 ZZ	2RS		52.0	15.0	1.1	14165	6626	14000	17000	144	SS 6304
SS 6005	SS 6005 ZZ	2RS	25.0	47.0	12.0	0.6	8978	4925	15000	18000	80	SS 6005
SS 6205	SS 6205 ZZ	2RS		52.0	15.0	1.0	12495	7760	13000	15000	128	SS 6205
SS 6305	SS 6305 ZZ	2RS		62.0	17.0	1.1	18365	9513	11000	13000	232	SS 6305
SS 6006	SS 6006 ZZ	2RS	30.0	55.0	13.0	1.0	11802	6941	13000	15000	116	SS 6006
SS 6206	SS 6206 ZZ	2RS		62.0	16.0	1.0	17357	6534	11000	13000	199	SS 6206
SS 6306	SS 6306 ZZ	2RS		72.0	19.0	1.1	23762	12684	9600	12000	346	SS 6306
SS 6007	SS 6007 ZZ	2RS	35.0	62.0	14.0	1.0	14238	8663	11000	13000	155	SS 6007
SS 6207	SS 6207 ZZ	2RS		72.0	17.0	1.1	22901	12978	9200	11000	288	SS 6207
SS 6307	SS 6307 ZZ	2RS		80.0	21.0	1.5	29705	16034	8500	10000	457	SS 6307
SS 6008	SS 6008 ZZ	2RS	40.0	68.0	15.0	1.0	14963	9681	10000	12000	192	SS 6008
SS 6208	SS 6208 ZZ	2RS		80.0	18.0	1.1	25967	15047	83000	10000	366	SS 6208
SS 6009	SS 6009 ZZ	2RS	45.0	75.0	16.0	1.0	15908	10143	9200	11000	245	SS 6009
SS 6209	SS 6209 ZZ	2RS		85.0	19.0	1.1	29180	17115	7700	9200	407	SS 6209
SS 6010	SS 6010 ZZ	2RS	50.0	80.0	16.0	1.0	19436	13923	8400	9900	261	SS 6010
SS 6210	SS 6210 ZZ	2RS		90.0	20.0	1.1	31290	19541	7100	8500	463	SS 6210

^{1.} Lager sind auch einseitig geschlossen verfügbar: Nachsetzzeichen Z, RS, RU oder TS.

Vergleichsliste

Metrische Reihe

	NSK	коуо	NMB	EZO	NTN
	681	681	L-310	681	681
	MR31	ML1003	L-310W51	MR31	-
	691	691	R-410	691	691
	MR41X	ML1204	R-412	MR41X	BC1.2-4
	681X	68/1.5	L-415	681X	68/1.5
	691X	69/1.5	R-515	691X	69/1.5
	601X	ML1506	R-615	601X	60/1.5
	672 682	682	L-520	672 682	672 682
	MR52	ML2005	L-520W02	MR52	BC2-5
	692	692	R-620	692	692
	MR62	ML2006	R-620W02	MR62	BC2-6
	MR72	ML2007	R-720Y52	MR72	BC2-7
	602	602	R-720	602	602
	682X	68/2.5	L-625	682X	68/2.5
	692X	69/2.5	R-725	692X	69/2.5
	MR82X	ML2508/1B	R-825Y52	MR82X	BC2.5-8
	602X	ML2508	R-825	602X	60/2.5
	MR63	ML3006	L-630	MR63	673
	683	683	L-730	683	683
	MR83	ML3008	R-830Y52	MR83	BC3-8
	693 MB03	693	R-830	693	693
	MR93 603	ML3009	R-930Y52	MR93	BC3-9 603
	623	603	R-930 R-1030	603	603
	633	633	n-1030	623	633
	MR74	ML4007	L-740	MR74	674
	MR84	ML4007 ML4008	L-840	MR84	BC4-8
	684	684	L-940	684	684
	MR104	ML4010	L-1040X2	MR104	BC4-10
	694	694	R-1140	694	694
	604	604	R-1240	604	604
	624	624	R-1340	624	624
	634	634	R-1640X4	634	634
	MR85	ML5008	L-850	MR85	675
	MR95	ML5009	L-950	MR95	BC5-9
	MR105	ML5010	L-1050	MR105	BC5-10
L	685	685	L-1150	685	685
	695	695	R-1350	695	695
	605	605	R-1450	605	605
\vdash	625	625	R-1650X4 R-1950	625 635	625 635
	MR106	ML6010	L-1060	MR106	676
	MR126	ML6010	L-1260	MR126	BC6-12
	686	686	L-1360	686	686
	696	696	R-1560	696	696
	606	606	R-1760X2	606	606
	626	626	R-1960	626	626
	636	636	-	636	636
	MR117	ML7011	L-1170	MR117	677
	MR137	ML7013	L-1370	MR137	BC7-13
	687	687	L-1470	687	687
	697	697	- D 1070	697	697
	607	607	R-1970	607	607
	627	627	R-2270	627	627
	637 MR128	637 ML8012	L-1280	637 MR128	637 678
	MR148	ML8012	L-1280	MR148	BC8-14
	688	688	L-1680	688	688
	698	698	R-1980	698	698
	608	608	R-2280	608	608
	628	628	-	628	628
	638	638	-	638	638
	679	679	-	679	679
	689	689	L-1790	689	689
	699	699	L-2090	699	699
	609	609	- D 0555	609	609
	629	629	R-2690	629	629
	639	639	- L 1010M7	639	639
	6800	6800	L-1910W7	6800	6800
	6900	6900	P. 2610	6900	6900
	6000 6200	6000 6200	R-2610	6000 6200	6000 6200
	6801	6801		6801	6801
	6901	6901	_	6901	6901
		6802	-	6802	6802
	6807				0002
	6802 6902		-		6902
	6902 6803	6902 6803	-	6902 6803	6902 6803

	1		1	1
NSK	KOYO	NMB	EZO	NTN
F681	F681	LF-310	F681	FL681
F691	F691	RF-410	F691	FL691
MF41X	OBF05	RF-412	MF41X	FLBC1.2-4
F681X	F68/1.5	RF-415	F681X	FL68/1.5
F691X	F69/1.5	RF-515	F691X	FL69/1.5
F601X	MLF1506	RF-615	F601X	FL60/1.5
F682	F682	LF-520	F682	FL682
MF52	MLF2005	LF-520W02	MF52	-
F692	F692	RF-620	F692	FL692
MF62	MLF2006	RF-620W52	MF62	FLBC2-6
MF72	MLF2007	RF-720Y52	MF72	-
F602	F602	RF-720	F602	FL602
F682X	F68/2.5	LF-625	F682X	FL68/2.5
F682X	F69/2.5	RF-725	F682X	FL69/2.5
MF82X	MLF2508/1B	RF-825Y52	MF82X	FLBC2.5-8
F602X	MLF2508	RF-825	F602X	FL60/2.5
MF63	MLF3006	LF-630	MF63	FL673
F683	F683	LF-730	F683	FL683
MF83	MLF3008	RF-830Y52	MF83	FLBC3-8
F693	F693	RF-830	F693	FL693
MF93	MLF3009	RF-930Y52	MF93	FLBC3-9
F603	F603	RF-930	F603	FL603 FL623
F623	F623	RF-1030	F623	
MF74 MF84	MLF4007 MLF4008	LF-740 LF-840	MF74 MF84	FL674 FLBC4-8
F684	F684	LF-940	F684	FL684
MF104	MLF4010	LF-1040X2	MF104	FLBC4-10
F694	F694	RF-1140	F694	FL694
F604	F604	RF-1240	F604	FL604
F624	F624	RF-1340	F624	FL624
F634	F634	RF-1640	F634	FL634
MF85	MLF5008	LF-850	MF85	FL675
MF95	MLF5009	LF-950	MF95	FLBC5-9
MF105	MLF5010	LF-1050	MF105	FLBC5-10
F685	F685	LF-1150	F685	FL685
F695	F695	RF-1350	F695	FL695
F605	F605	RF-1450	F605	FL605
F625	F625	RF-1650X4	F625	FL625
F635	F635	RF-1950	F635	FL635
MF106	MLF6010	LF-1060	MF106	FL676
MF126	MLF6012	LF-1260	MF126	FLBC6-12
F686	F686	LF-1360	F686	FL686
F696	F696	RF-1560X2	F696	FL696
F606	F606	RF-1760X2	F606	FL606
F626	F626	RF-1960	F626	FL626 FL677
MF117 MF137	MLF7011 MLF7013	LF-1170 LF-1370	MF117 MF137	FL677 FLBC3-17
F687	F687	LF-1470	F687	FL687
F697	F697	-	F697	FL697
F607	F607	RF-1970	F607	FL607
F627	F627	RF-2270	F627	FL627
MF128	MLF8012	LF-1280	MF128	FL678
MF148	MLF8014	LF-1480	MF148	FLBC8-14
F688	F688	LF-1680	F688	FL688
F698	F698	RF-1980	F698	FL698
F608	F608	RF-2280	F608	FL608
F679	-	-	F679	FL679
F689	F689	LF-1790	F689	FL689
F699	F699	LF-2090	F699	FL699
F609	F609	-	F609	FL609
F6800	F6800	LF-1910	F6800	FL6800
F63800	F63800	LF-1910W7	F63800	FL63800
F6900	F6900	-	F6900	FL6900

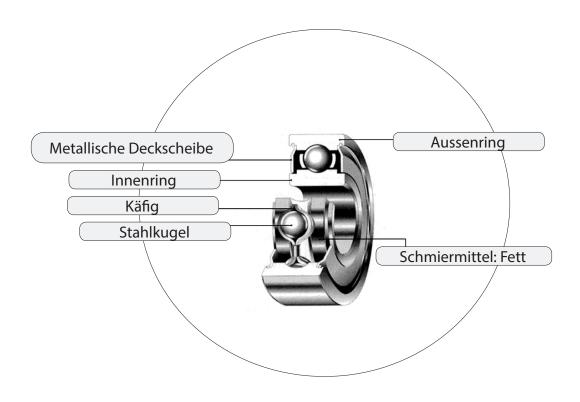
Metrische Reihe geschlossen

NSK	KOYO	NMB	EZO	NTN
681XZZ	W68/1.5ZZ	L-415ZZ	681XZZ	W68/1.5ZZA
691XZZ	W69/1.5ZZ	R-515ZZ	691XZZ	W69/1.5ZZA
601XZZ	WML1506ZZ	R-615ZZ	601XZZ	W60/1.5ZZA
682ZZ	W682ZZ	L-520ZZ	682ZZ	W682ZZA
MR52ZZ	WML2005ZZ	L-520ZZW52	MR52ZZ	WBC2-5ZZA
692ZZ	W692ZZ	R-620ZZ	692ZZ	W692ZZA
MR62ZZ	WML2006ZZ	R-6202ZY52	MR62ZZ	WBC2-6ZZA
MR72ZZS	WML2007ZZ	R-72022Y03	MR72ZZS	WBC2-7ZZA
602ZZS	W602ZZX	R-720ZZ	602ZZS	W602ZZA
682XZZ	W68/2.5ZZ	L-625ZZ	682XZZ	W68/2.5ZZA
692XZZ	W69/2.5ZZ	R-725ZZ	692XZZ	W69/2.5ZZA
602XZZ	WOB17ZZ	R-825ZZ	602XZZ	W60/2.5ZZA
MR63ZZS	WML3006ZZX	L-630ZZ	MR63ZZS	WA673ZZA
683ZZ	W683ZZ	L-730ZZ	683ZZ	WA683ZZA
MR83ZZ	WML3008ZZ	L-830ZZ	MR83ZZ	WBC3-8ZZA
693ZZ MR93ZZ	W693ZZ 603/2BZZ	R-830ZZ R-930ZZY04	693ZZ MR93ZZ	WA693ZZA WBC3-9ZZA
603ZZ	W603ZZ	R-930ZZ	603ZZ	W603ZZA
623ZZ	623ZZ	R-1030ZZ	623ZZ	623ZZA
633ZZ	633ZZ	R-1330ZZ	633ZZ	633ZZ
MR74ZZS	WML4007ZZX	L-740ZZ	MR74ZZS	WA674ZZA
MR84ZZ	WML4008ZZX	L-840ZZ	MR84ZZ	WBC4-8ZZA
684ZZ	W684ZZ	L-940ZZ	684ZZ	W684ZZA
MR104ZZ	WML4010ZZ	L-1040ZZ	MR104ZZ	WBC4-10ZZA
694ZZ	694ZZ	R-1140ZZ	694ZZ	694ZZA
604ZZ	604ZZ	R-1240ZZ	604ZZ	604ZZ
624ZZ	624ZZ	R-1340ZZ	624ZZ	624ZZ
634ZZ	634ZZ	R-1640ZZ	634ZZ	634ZZ
MR85ZZS	WML5008ZZX	L-850ZZ	MR85ZZS	WA675ZZA
MR95ZZS	WML5009ZZX	L-950ZZ	MR95ZZS	WBC5-9ZZA
MR105ZZ	WML5010ZZ	L-1050ZZ	MR105ZZ	WBC5-10ZZ
685ZZ	W685ZZ	L-1150ZZ	685ZZ	W685ZZA
695ZZ	695ZZ	R-1350ZZ	695ZZ	695ZZA
605ZZ	605ZZ	R-1450ZZ	605ZZ	605ZZ
625ZZ	625ZZ	R-1650ZZ	625ZZ	625ZZ
MR106ZZS	WML610ZZX	L-1060ZZ	MR106ZZS	WA676ZZA
MR126ZZ	WML6012ZZ	L-1260ZZ	MR126ZZ	WBC6-12ZZA
686ZZ	W686ZZ	L-1360ZZ	686ZZ	W686ZZA
696ZZ	696ZZ	R-1560ZZ	696ZZ	696ZZ
606ZZ	606ZZ	R-1760ZZ	606ZZ	606ZZ
626ZZ	626ZZ	R-1960ZZ	626ZZ	626ZZ
MR117ZZS	WML7011ZZX	L-1170ZZ	MR117ZZS	WA677ZZA
MR137ZZ	WML7013ZZ	L-1370ZZ	MR137ZZ	WBC7-13ZZ
687ZZ	W687ZZ	L1-470ZZ	687ZZ	W687ZZA
607ZZ	607ZZ	R-1970ZZ	607ZZ	607ZZ
627ZZ	627ZZ	R-2270ZZ	627ZZ	627ZZ
MR128ZZS	WML8012ZZX	L-1280ZZ	MR128ZZS	W678ZZA
MR148ZZ	WML8014ZZ	L-1480ZZ	MR148ZZ	WBC8-14ZZ
688ZZ	W688ZZ	L-1680ZZ	688ZZ	W688ZZ
608ZZ	608ZZ	R-2280ZZ	608ZZ	608ZZ
689ZZ	W689ZZ	L-1790ZZ	689ZZ	W689ZZ
699ZZ	699ZZ	L-2090ZZ	699ZZ	699ZZ
629ZZ	629ZZ	R-2690ZZ	629ZZ	629ZZ
6800ZZ	6800ZZ	L-1910ZZW5	6800ZZ	6800ZZ
63800ZZ	63800ZZ	L-1910ZZ	63800ZZ	63800ZZ
6900ZZ	6900ZZ	L-2210ZZ	6900ZZ	6900ZZ
6000ZZ	6000ZZ	R-2610ZZ	6000ZZ	6000ZZ
6200ZZ	6200ZZ	11-201022	6200ZZ	6200ZZ
		-		
6801ZZ	6801ZZ 6901ZZ	-	6801ZZ	6801ZZ
6901ZZ			6901ZZ	6901ZZ
6802ZZ	6802ZZ	-	6802ZZ 6902ZZ	6802ZZ
600277			D90///	6902ZZ
6902ZZ 6803ZZ	6902ZZ 6803ZZ	-	6803ZZ	6803ZZ

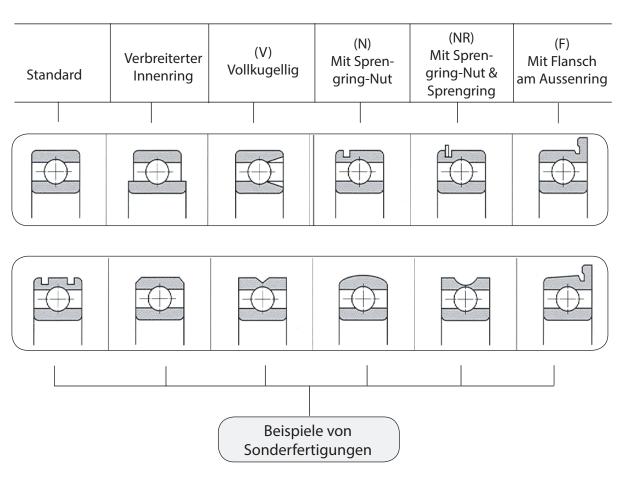
NSK	коуо	NMB	EZO	NTN
F681 XZZ		LF-415ZZ	F681XZZ	
	WF68/1.5ZZ			FLW68/1.5ZZA
F691XZZ	WF69/1.5ZZ	RF-515ZZ	F691XZZ	FLW69/1.5ZZA
F601XZZ	WMLF1506ZZ	RF-615ZZ	F601XZZ	FLW60/1.5ZZA
F682ZZ	WF682ZZ	LF-520ZZ	F682ZZ	FLW682ZZA
MF52ZZ	WMLF2005ZZ	LF-520ZZW52	MF52ZZ	FLWBC2-5ZZA
F692ZZ	WF692ZZ	RF-620ZZ	F692ZZ	FLW692ZZA
MF62ZZ	WMLF2006ZZ	RF-620ZZY52	MF62ZZ	FLWBC2-6ZZA
MF72ZZS	WMLF2007ZZ	RF-720ZZY03	MF72ZZS	FLWBC2-7ZZA
F602ZZS	WF602ZZX	RF-720ZZ	F602ZZS	FLW602ZZA
F682XZZ	WF68/2.5ZZ	LF-625ZZ	F682XZZ	FLW68/2.5ZZA
F692XZZ	WF69/2.5ZZ	RF-725ZZ	F692XZZ	FLW69/2.5ZZA
F602XZZ	WMLF2508ZZ	RF-825ZZ	F602XZZ	FLW60/2.5ZZA
MF63ZZS	WMLF3006ZZX	LF-630ZZ	MF63ZZS	FLWA673ZZA
F683ZZ	WF683ZZ	LF-730ZZ	F683ZZ	FLW683ZZA
MF83ZZ	WMLF3008ZZ	LF-830ZZ	MF83ZZ	FLWBC3-8ZZA
F693ZZ	WF693ZZ	RF-830ZZ	F693ZZ	FLW693ZZA
MF93ZZ	F603/2BZZ	RF-930ZZY04	MF93ZZ	FLAWBC3-9ZZA
F603ZZ	WF603ZZ	RF-930ZZ	F603ZZ	FLW603ZZA
F623ZZ	F623ZZ	RF-1030ZZ	F623ZZ	FL623ZZA
F633ZZ	F633ZZ	RF-1330ZZ	F633ZZ	FL633ZZ
MF74ZZS	WMLF4007ZZX	LF-740ZZ	MF74ZZS	FLWA674ZZA
MF84ZZ	WMLF4008ZZX	LF-840ZZ	MF84ZZ	FLWBC4-8ZZA
F684ZZ	WF684ZZ	LF-940ZZ	F684ZZ	FLW684ZZA
MF104ZZ	WMLF4010ZZ	LF-1040ZZ	MF104ZZ	FLAWBC4-10ZZA
F694ZZ	F694ZZ	RF-1140ZZ	F694ZZ	FL694ZZA
F604ZZ	F604ZZ	RF-1240ZZ	F604ZZ	FL604ZZ
F624ZZ	F624ZZ	RF-1340ZZ	F624ZZ	FL624ZZ
F634ZZ	F634ZZ	RF-1640ZZ	F634ZZ	FL634ZZ
MF85ZZS	WMLF5008ZZX	LF-850ZZ	MF85ZZS	FLWA675ZZA
MF95ZZS	WMLF5009ZZX	LF-950ZZ	MF95ZZS	FLWBC5-9ZZA
MF105ZZ	WMLF5010ZZ	LF-1050ZZ	MF105ZZ	FLAWBCS-10ZZA
F685ZZ	WF685ZZ	LF-1150ZZ	F685ZZ	FLW685ZZA
F695ZZ	F695ZZ	RF-1350ZZ	F695ZZ	FL695ZZA
F605ZZ	F605ZZ	RF-1450ZZ	F605ZZ	FL605ZZ
F625ZZ	F625ZZ	RF-1650ZZ	F625ZZ	FL625ZZ
MF106ZZS	WMLF610ZZX	LF-1060ZZ	MF106ZZS	FLWA676ZZA
MF126ZZ	WMLF6012ZZ	LF-1260ZZ	MF126ZZ	FLAWBC6-12ZZA
F686ZZ	WF686ZZ	LF-1360ZZ	F686ZZ	FLW686ZZA
F696ZZ	F696ZZ	RF-1560ZZ	F696ZZ	FL696ZZ
F606ZZ	F606ZZ	RF-1760ZZ	F606ZZ	FL606ZZ
F626ZZ	F626ZZ	RF-1960ZZ	F626ZZ	FL626ZZ
MF117ZZS	WMLF7011ZZX	LF-1170ZZ	MF117ZZS	FLWA677ZZA
MF137ZZ	WMLF7013ZZ	LF-1370ZZ	MF137ZZ	FLAWBC7-13ZZA
F687ZZ	WF687ZZ	LF-1470ZZ	F687ZZ	FLW687ZZA
F607ZZ	F607ZZ	RF-1970ZZ	F607ZZ	FL607ZZ
F627ZZ	F627ZZ	RF-2270ZZ	F627ZZ	FL627ZZ
MF128ZZS	WMLF8012ZZX	LF-1280ZZ	MF128ZZS	FLAW678ZZA
MF148ZZ	WMLF8014ZZ	LF-1480ZZ	MF148ZZ	FLWBC8-14ZZA
F688ZZ	WF688ZZ	LF-1680ZZ	F688ZZ	FLW688ZZ
F608ZZ	F608ZZ	RF-2280ZZ	F608ZZ	FL608ZZ
F689ZZ	WF689ZZ	LF-1790ZZ	F689ZZ	FLW689ZZ
F699ZZ	F699ZZ	LF-2090ZZ	F699ZZ	FL699ZZ
F629ZZ	F629ZZ	RF-2690ZZ	F629ZZ	FL629ZZ
F6800ZZ	F6800ZZ	LF-1910ZZW5	F6800ZZ	FL6800ZZ
F63800ZZ	F63800ZZ	LF-1910ZZ	F63800ZZ	FL63800ZZ
F6900ZZ	F6900ZZ	LF-2210ZZ	F6900ZZ	FL6900ZZ

Zoll Reihe

Zoll Reihe geschlossen


Γ			_	_		_		_	_	
	NSK	КОҮО	NMB	EZO	NTN	NSK	коуо	NMB	EZO	NTN
	R09	OB63	RI-2	R09	R01	ROZZ	WOB65ZZ	RI-2 1/2ZZ	R0ZZ	RAW0ZZA
	R0	OB65	RI-2 1/2	R0	R0	R1ZZ	WOB67ZZ	RI-3ZZ	R1ZZ	RA1ZZA
	R1	OB67	RI-3	R1	R1	R1-4ZZS	WOB69ZZX	RI-4ZZ	R1-4ZZS	RA1-4ZZA
5	R1-4	OB69	RI-4	R1-4	R1-4	R133ZZS	WOB71ZZX	RI-3332ZZ	R133ZZS	RA133ZZA
Ŕ	R133	OB71	RI-3332	R133	R133	R1-5ZZS	WOB72ZZX	RI-5ZZ	R1-5ZZS	RA1-5ZZA
;	R1-5	OB72	RI-5	R1-5	R1-5	R144ZZS	WOB74ZZX	RI-418ZZ	R144ZZS	RA144ZZA
<u>'</u>	R144	OB74	RI-418	R144	R144	R2-5ZZ	WOB75ZZ	RI-518ZZ	R2-5ZZ	RA2-5ZZA
)	R2-5	OB75	RI-518	R2-5	R2-5	R2-6ZZ	WOB76ZZ	RI-618ZZ	R2-6ZZ	RA2-6ZZA
	R2-6	OB76	RI-618	R2-6	R2-6	R2ZZ	EE0ZZ	R-2ZZ	R2ZZ	R2ZZA
١	R2	EE0	R-2	R2	R2	R2AZZ	EE1/2ZZ	-	R2AZZ	RA2ZZ
	R2A	EE1/2	-	R2A	RA2	R155ZZS	WOB79ZZX	RI-5532ZZ	R155ZZS	RA155ZZA
	R155	OB79	RI-5532	R155	R155	R156ZZS	WOB81ZZ	RI-5632ZZ	R156ZZS	RA156ZZA
	R156	OB81	RI-5632	R156	R156	R166ZZ	WOB82ZZ	RI-6632ZZ	R166ZZ	R166ZZA
	R166	OB82	RI-6632	R166	R166	R3ZZ	EE1SZZ	R-3ZZ	R3ZZ	RA3ZZ
	R3	EE1	R-3	R3	R3	R168ZZ	OB87ZZX	RI-614ZZ	R168ZZ	RA168ZZA
	R168	OB87	RI-614	R168	R168	R188ZZ	WOB88ZZ	RI-814ZZ	R188ZZ	RA188ZZA
	R188	OB88	RI-814	R188	R188	R4ZZ	EE11/2ZZ	R-4ZZ	R4ZZ	R4ZZ
	R4	EE11/2	R-4	R4	R4	R4AZZ	EE2ZZ	RI-1214ZZ	R4AZZ	RA4ZZ
	R4A	EE2	RI-1214	R4A	RA4	R1810ZZS	OBF92ZZX	RI-8516ZZ	R1810ZZS	RA1810ZZA
	R1810	OB92-1	RI-8516	R1810	R1810	R6ZZ	EE3SZZ	RI-1438ZZ	R6ZZ	R6ZZ
	R6	EE3	RI-1438	R6	R6	R8ZZ	-	RI-1812ZZ	R8ZZ	R8ZZ
	R8	-	RI-1812	R8	R8	R10ZZ	-	-	R10ZZ	R10ZZ
	R10	-	-	R10	R10	R12ZZ	-	-	R12ZZ	R12ZZ
	R12	-	-	R12	R12					

	NSK	KOYO	NMB	EZO	NTN
	FR0	OBF65	RIF-2 1/2	FR0	FLR0
	FR1	OBF67	RIF-3	FR1	FLR1
-	FR1-4	OBF69	RIF-4	FR1-4	FLR1-4
<u>: </u> a	FR133	OBF71	RIF-3332	FR133	FLR133
SU	FR1-5	OBF72	RIF-5	FR1-5	FLR1-5
5	FR144	OBF74	RIF-418	FR144	FLR144
0	FR2-5	OBF75	RIF-518	FR2-5	FLR2-5
Flansch offene	FR2-6	OBF76	RIF-618	FR2-6	FLR2-6
ņ	FR2	OBF77	RF-2	FR2	FLR2
e	FR155	OBF79	RIF-5532	FR155	FLR155
<u>-</u> ac	FR156	OBF81	RIF-5632	FR156	FLR156
Lager	FR166	OBF82	RIF-6632	FR166	FLR166
_	FR3	OBF84	RF-3	FR3	FLRA3
	FR168	OBF87	RIF-614	FR168	FLR168
	FR188	OBF88	RIF-814	FR188	FLR188
	FR4	OBF89	RF-4	FR4	FLR4
	FR1810	OBF92-1	RIF-8516	FR1810	FLR1810
	FR6	OBF93	RIF-1438	FR6	FLR6
	FR8	-	RIF-1812	FR8	FLR8
	FR10	-	-	FR10	FLR10
	FR12	-	-	FR12	FLR12


NSK	КОҮО	NMB	EZO	NTN
FR0ZZ	WOBF65ZZ	RIF-2 1/2ZZ	FR0ZZ	FLRA0ZZA
FR1ZZ	WOBF67ZZ	RIF-3ZZ	FR1ZZ	FLRA1ZZA
FR1-4ZZS	WOBF69ZZX	RIF-4ZZ	FR1-4ZZS	FLRA1-4ZZA
FR133ZZS	WOBF71ZZX	RIF-3332ZZ	FR133ZZS	FLRA133ZZA
FR1-5ZZS	WOBF72ZZX	RIF-5ZZ	FR1-5ZZS	FLRA1-5ZZA
FR144ZZS	WOBF74ZZX	RIF-418ZZ	FR144ZZS	FLRA144ZZA
FR2-5ZZ	WOBF75ZZ	RIF-518ZZ	FR2-5ZZ	FLRA2-5ZZA
FR2-6ZZ	WOBF76ZZ	RIF-618ZZ	FR2-6ZZ	FLRA2-6ZZA
FR2ZZ	OBF77ZZ	RF-2ZZ	FR2ZZ	FLR2ZZA
FR155ZZS	WOBF79ZZX	RIF-5532ZZ	FR155ZZS	FLRA155ZZA
FR156ZZS	WOBF81ZZ	RIF-5632ZZ	FR156ZZS	FLRA156ZZA
FR166ZZ	WOBF82ZZ	RIF-6632ZZ	FR166ZZ	FLAR166ZZA
FR3ZZ	OBF84ZZ	RF-3ZZ	FR3ZZ	FLRA3ZZ
FR168ZZS	OBF87ZZX	RIF-614ZZ	FR168ZZS	FLAR168ZZA
FR188ZZ	WOBF88ZZ	RIF-814ZZ	FR188ZZ	FLRA188ZZA
FR4ZZ	OBF89ZZ	RF-4ZZ	FR4ZZ	FLR4ZZ
FR1810ZZS	OBF92ZZX	RIF-8516ZZ	FR1810ZZS	FLRA1810ZZA
FR6ZZ	WOBF93ZZ	RIF-1438ZZ	FR6ZZ	FLR6ZZ
FR8ZZ	-	RIF-1812ZZ	FR8ZZ	FLR8ZZ
FR10ZZ	-	-	FR10ZZ	FLR10ZZ
FR12ZZ	-	-	FR12ZZ	FLR12ZZ

Design und Merkmale der Radialkugellager

Lageraufbau

Bauformen

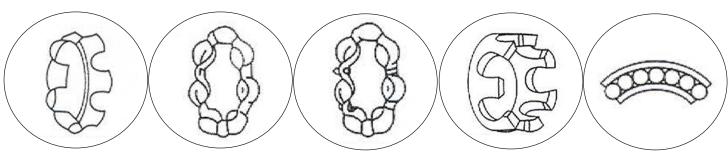
Design und Merkmale der Radialkugellager

Merkmale der Miniaturlager

LAST	Einreihige Radial-Miniaturlager, in welchen die Kugeln durch einen Käfig gehalten werden, können Radial-/Axiallast und Kippmomente aufnehmen. V-Typ vollkugelige Kugellager können nur Radiallast und eine niedrige Axiallast aufnehmen.
DREHZAHLEN	Die maximal zulässigen Drehzahlen für Miniaturlager sind im Wesentlichen von den Lagertypen und Grössen, Käfigtypen, Lagerluft, Methode und Art der Schmierung, Fertigungsgenauigkeit, Dichtungsmethoden und der Last abhängig.
DREHMOMENT UND GERÄUSCHPEGEL	Einreihige Radial-Miniaturkugellager sind Präzisionsbauteile und haben ein niedriges Drehmoment und einen tiefen Geräuschpegel.
NEIGUNG DES INNEN- UND AUSSENRINGES	Wellen- und Gehäusesitze mit schlechter Genauigkeit, Montagefehler und Wellen-Durchbiegung können Neigungen zwischen dem Innen- und Aussenring verursachen. Die Innenluft des Lagers wird das in einem gewissen Ausmass ermöglichen.
STEIFHEIT	Lager unter Last können sich verformen. Die Verformung wird beeinflusst von Lagertyp, Grösse, Form und Last.
INSTALLATION UND ENTFERNUNG	Das einreihige Radialkugellager ist ein nicht trennbarers Lager. Daher sollten Wellen und Gehäuse so gestaltet sein, dass das Lager kontrolliert und bei Bedarf ausgetauscht werden kann.
AXIALLAGE	Verbesserte Axiallage wird ermöglicht durch NR und F-Typ Lager.

Kugellager Material

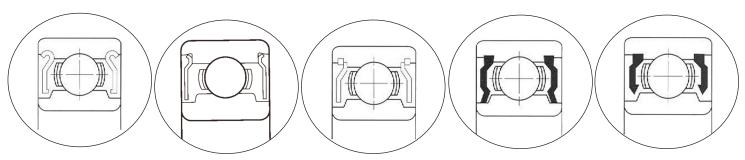
Standardmaterial für Ringe und Kugel ist ein vakuumentgaster, hochwertiger Kohlenstoffchromstahl. Das führt zu einem hohen Wirkungsgrad, geringem Drehmoment, geringem Geräuschlevel und langer Lagerlebensdauer. Für Lager, bei denen Korrosions- und Hitzebeständigkeit gefordert wird, wird martensitischer rostfreier Stahl verwendet.


Kugellager Material

Chemische Zusammensetzung der Lagerwerkstoffe

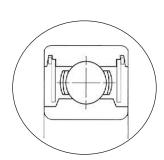
MATERIAL			Chemisch		Härte					
MATERIAL	SYMBOL	С	Si	Mn	P	S	Cr	Мо	äquvalent	(HRC)
Hochwertiger Kohlenstoff- chromstahl	SUJ2	0.95-1.10	0.15-0.35	≤0.50	≤0.025	≤0.025	1.30-1.60	≤0.08	SAE52100 100Cr6 ASTM52100 BS535A99 1.3505	60-64
Edelstahl	SUS44OC	0.95-1.20	≤1.00	≤1.00	≤0.040	≤0.030	16.0-18.0	≤0.75	AISI440C X102CrMo17 X105CrMo17 1.4125, 1.3543	58-62
	KS440 (ACD34)	0.60-0.75	≤1.00	≤1.00	≤0.030	≤0.020	11.5-13.0	≤0.30	X65Cr13 1.4037	58-62

Art & Merkmale der Käfige, Schilde & Dichtungen


Käfige

W: Einteiliger	J: Zweiteiliger	RJ: Zweiteiliger	TW/TNH: Einteiliger	PAG-6: Vollrollig
Kronen-Typ aus Stahl	Band-Typ aus Stahl	Niet-Typ	Kunststoffkäfig	
-Der aus Edelstahl gepresste Käfig ist Innenring geführt. -Er zeigt eine ausge- zeichnete Leistung in niedrigen Drehmo- menten und niedrigen Geschwindigkeitsan- wendungen.	-Besteht aus zwei gepaarten Stahlb- lechpressungen, der Abdeckungsseite und der Fingerseite. -In der Regel durch die Wälzkörper geführt und zur Reduzierung des Reibmoments.	-Der RJ -Käfig-Typ ist geeignet für grössere Lager mit einer hohen Last-TragfähigkeitDie beiden Teile sind miteinander vernietet und stark genug, um höhere Vibrationslevels und Beschleunigung zu widerstehenDer Käfig ist durch die Kugeln geführt und reduziert das Reibmoment.	-Geformter Nylon- Käfig. -Reduziert die Fluk- tuation im Laufmo- ment. -Geeignet für hohe Drehzahlen. Durch die Wälzkörper ge- führt. -NYLON KÄFIG Be- triebstemperaturbe- reich: von -30 bis +120°C	-Diese Art Lager hat keinen Käfig, aber die maximal mögliche Anzahl von KugelnAufgrund der Tatsache, dass der Innen- und Aussenring einen Füllschlitz haben, ist die axiale Last-Tragfähigkeit dieses Lager-Typs geringDiese Art des Lagers ist geeignet für hohe radiale Last und niedrige Geschwindigkeitsanwendungen.

Art & Merkmale der Käfige, Schilde & Dichtungen


Deckscheiben und Dichtungen

ZZ1: Stahl-Blech abgeschirmt	ZZ: Stahl-Blech abgeschirmt	ZZS: Stahl-Schild mit Sprengring	2RS: Kontakt Gummidichtung	2RSF/LLB: Kontaktlose Gummidichtung
-Kontaktloser Schild in Aussenring gedrückt. -Sehr wenig Fetaustritt und geringes Eindrin- gen von Verunreini- gungen.	-Kontaktloser Schild in Aussenring gedrückt. -Sehr wenig Fetaustritt und geringes Eindrin- gen von Verunreini- gungen.	-Kontaktloser Schild im Aussenring gehaltenGeringes Eindringen von VerunreinigungenVor allem für kleinere oder schmalere Lager verwendet.	-Gummidichtung in Aussenring eingelassenLeichter Kontakt mit Innenring, hält Fett zurück und verhindert Eindringen von VerunreinigungenNBR Dichtung Betriebstemperaturbereich von -40 bis +120°C -FKM (Viton) Dichtung Betriebstemperaturbereich: von -30 bis +230°C	-Gummidichtung in den Aussenring eingelassenLeichter Kontakt mit Innenring, hält Fett und verhindert das Eindringen von VerunreinigungenNBR Dichtung Betriebstemperaturbereich von: -40 bis +120°C -FKM (Viton) Dichtung Betriebstemperaturbereich: von -50 bis +230°C

Sonderdichtung TTS

PTFE-Dichtung mit Sprengring

- -Mit Glasfaser verstärkte Teflon-Dichtung, ist im Aussenring durch Sprengring gehalten.
- -Geringes Eindringen von Verunreinigungen.
- -Vor allem für kleinere oder schmalere Lager verwendet.
- -Dichtungen können biegen, um interne Druckveränderungen zu unterbinden.
- -Betriebstemperaturbereich: von -100 bis +260°C

Toleranz, Genauigkeitsklasse & Fasenbemessung von Lagern

Innenringtoleranz (ISO)

				Δdmp			Δds						Vdp						Vd	mp	
		P	20	P6	P5	P4	P4 Ø-Serie	Q	P0 5-Serie		,	P6 Ø-Serie		P Ø-S			erie	P0	P6	P5	P4
d (m	ım)						0.2.3	7.8.9	7.8.9 0 2.3		7.8.9	0	2.3	7.8.9	0.2.3	7.8.9	0.2.3				
Über	Inkl.	Obere	Untere	Untere	Untere	Untere	Obere Untere		Max.			Max.		Ma	ax.	M	ax.	Max.	Max.	Max.	Max.
0.6(1)	2.5	0	-8	-7	-5	-4	0 -4	10	8	6	9	7	5	5	4	4	3	6	5	3	2
2.5	10	0	-8	-7	-5	-4	0 -4	10	8	6	9	7	5	5	4	4	3	6	5	3	2
10	18	0	-8	-7	-5	-4	0 -4	10	8	6	9	7	5	5	4	4	3	6	5	3	2
18	30	0	-10	-8	-6	-5	0 -5	13	10	8	10	8	6	6	5	5	4	8	6	3	2.5
30	50	0	-12	-10	-8	-6	0 -6	15	12	9	13	10	8	8	6	6	5	9	8	4	3

Vermerk 1: Der obere Wert des Bohrungsdurchmessers in dieser Tabelle ist nicht anwendbar, wenn der Abstand von der Lagerringfläche kleiner ist als das 1,2-fache der Fasenbemessung Tsmax. Vermerk2: Gemäss der Revision der ANSI / ABMA Std.20-1996, entsprechen die Klassen ABEC1 · ABEC3 · ABEC5 · ABEC7, den Klassen CLASSO · CLASS6 · CLASS5 · CLASS4.

Aussenringtoleranz (ISO)

		910		- (/																			
D(m	m)			ΔDmp			ΔDs							VDp	(2)						VD	mp ⁽²⁾	
							P4		P)			Р	6		P.	5	P4	1				
		P	0	P6	P5	P4	Ø -Serie	(Offen		Dichtung Schild	(Offen		Dichtung Schild	Off	en	Offe	en	P0	P6	P5	P4
									Ø-Se	erie			Ø-S	erie		Ø-S	erie	Ø-Se	erie				
							0.2.3	7,8,9	0	2,3	2,3	7,8,9	0	2,3	2,3	7,8,9	0,2,3	7,8,9	0,2,3				
Über	Inkl.	Obere	Untere	Untere	Untere	Untere	Obere Untere		Ma	ıx.			Ma	ax.		Ma	ix.	Ма	x.	Max.	Max.	Max.	Max.
2.5(1)	6	0	-8	-7	-5	-4	0 -4	10	8	6	10	9	7	5	9	5	4	4	3	6	5	3	2
6	18	0	-8	-7	-5	-4	0 -4	10	8	6	10	9	7	5	9	5	4	4	3	6	5	3	2
18	30	0	-9	-8	-6	-5	0 -5	12	9	7	12	10	8	6	10	6	5	5	4	7	6	3	2.5
30	50	0	-11	-9	-7	-6	0 -6	14	11	8	16	11	9	7	13	7	5	6	5	8	7	4	3
50	80	0	-13	-11	-9	-7	0 -7	16	13	10	20	14	11	8	16	9	7	7	5	10	8	5	3.5

Vermerk 1: Der untere Wert des Aussendurchmessers ist in dieser Tabelle nicht anwendbar, wenn der Abstand der Lagerringfläche weniger als das 1,2-fache der Fasenbemessung l'smax ist. Vermerk 2: Gemäss der Revision der ANSI / ABMA Std.20-1996, entsprechen die Klassen ABEC1 · ABEC3 · ABEC5 · ABEC7, den Klassen CLASSO · CLASS6 · CLASS5 · CLASS4.

Toleranz der Innen- und Aussenringbreite (ABMA)

Unit: µm

							_	-										
			Δd	mp	Δ	.ds	Vdp	Vdmp	ΔBs(ΔCs)	V	'Bs	К	ia	S	ia	S	D
	d (m	ım)	ΔRE	C 5P	ΔRE	C 5P	ABEC 5P	AREC 5D	ABEC 5P Einzelnes Lager									
	`	,		C 7P		C 7P	ABEC 7P	ABEC 7P	ABEC		ABEC 5P	ABEC 7P						
									ABE	C 7P								
Ü	ber	Inkl.	Obere	Untere	Obere	Untere	Max.	Max.	obere	untere	Max.							
-	_	10	0	-5	0	-5	2.5	2.5	0	-25	5	2.5	3.5	2.5	7	3	7	3
	10	18	0	-5	0	-5	2.5	2.5	0	-25	5	2.5	3.5	2.5	7	3	7	3
	18	30	0	-5	0	-5	2.5	2.5	0	-25	5	2.5	3.5	2.5	7	3	7	3

Vermerk1: ABEC5P & ABEC7P sind die Toleranzklassen für Hochpräzisionslager.

Toleranzgrenzwerte (Metrisch) der Fasenabmessungen von Radiallager

	d(mm)		rsn	nax	
rsmin	über	Inkl.	Radial	Axial	r amax
0.05	-	-	0.10	0.20	0.05
0.08	-	-	0.16	0.30	0.08
0.10	-	-	0.20	0.40	0.10
0.15	-	-	0.30	0.60	0.15
0.20	-	-	0.50	0.80	0.20
0.30 0.30	- 40	40	0.60 0.80	1.00 1.00	0.30 0.30
0.60 0.60	- 40	40 -	1.00 1.30	2.00 2.00	0.60 0.60
1.00 1.00	- 50	50 -	1.50 1.90	3.00 3.00	1.00 1.00
1.10 1.10	- 120	120 -	2.00 2.50	3.50 4.00	1.00 1.00
1.50 1.50	- 120	120 -	2.30 3.00	4.00 5.00	1.50 1.50

Unit:mm

Unit: µm

	Δ Bs $(\Delta Cs)^{(2)}$)		V _{Bs} (V	V)Cs ⁽²⁾			K	ia		9	d	5) ia		
	Einzellager		Innen/Au	ssenring	Inner	nring										d(mm)
	O P6	P5 P4	PO	P6	P5	P4	PO	P6	P5	P4	P5	P4	PS	P4		
Obere	Untere	Untere	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Obere	Inkl.
0	-40	-40	12	12	5	2.5	10	5	4	2.5	7	3	7	3	0.6(1)	2.5
0	-120	-40	15	15	5	2.5	10	6	4	2.5	7	3	7	3	2.5	10
0	-120	-80	20	20	5	2.5	10	7	4	2.5	7	3	7	3	10	18
0	-120	-120	20	20	5	2.5	13	8	4	3.0	8	4	8	4	18	30
0	-120	-120	20	20	5	3.0	15	10	5	4.0	8	4	8	4	30	50

Vermerk (1): 0.6mm ist in dieser Klassifizierung enthalten.
Vermerk (2): Die Innenring-Breitenvariationen sind für den Aussenring der gleichen Lagergrösse gleich. CLASS5 und CLASS4, beziehen sich nur auf den Aussenring.

Unit: µm

	K	ea		S	D	S	ea	VC	s ⁽³⁾				Flans	ch Typ					Flar	sch Typ	
										D(n	nm)		Δι	O1s		d(r	nm)		,	∆C1s	
PO	P6	P5	P4	P5	P4	P5	P4	P5	P4	D(mm)		РО	P6	P.	5 P4	u(i	11111)	PO) P6	P5	P4
Max.	Über	Inkl.	Obere	Untere	Obere	Untere	Über	Inkl.	Obere	Untere	Obere	Untere									
15	8	5	3	8	4	8	5	5	2.5	-	10	+220	-36	0	-36	0.6	2.5	0	-40	0	-40
15	8	5	3	8	4	8	5	5	2.5	10	18	+270	-43	0	-43	2.5	10	0	-120	0	-40
15	9	6	4	8	4	8	5	5	2.5	18	30	+330	-52	0	-52	10	18	0	-120	0	-80
20	10	7	5	8	4	8	5	5	2.5	30	30 50		-62	0	-62	18	30	0	-120	0	-120
25	13	8	5	8	4	10	5	6	3	50	80	+460	-74	0	-74	30	50	0	-120	0	-120

Vermerk (1): Grösse 2.5mm ist in dieser Klassifizierung enthalten.
Vermerk (2): Anwendbar ohne Sprengring.
Vermerk (3): Die Aussenring-Breitenvariationen für CLASSO und CLASS6 sind die gleichen wie für den Innenring der gleichen Lagergrösse.

Aussenringtoleranzen (ABMA)

Unit: µm

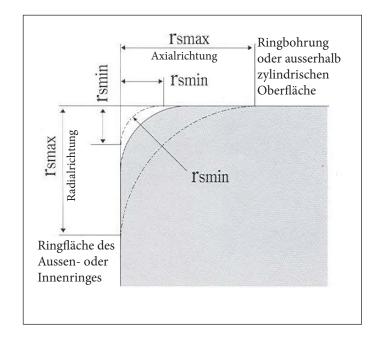
							Δι	Ds			VDp,	VDmp	ΔBs(ΔC_s	Vo	Cs ⁽¹⁾	S	D	K	ea	S	ea			Flanso	htyp		
D(r	nm)		∆Dmj	2		Offen		Dich	ntung/So	hild	Offen	Dich- tung/ Schild	Einze	llager	ABEC 5P	ABEC 7P	ABEC 5P	ABEC 7P	ABEC 5P	ABEC 7P			Δι	D1s	Δα	C1s ⁽¹⁾	Se	ea ⁽²⁾
		ABEC	ABEC	ABEC	ABEC	AE	BEC) 5P	/٢) 5P	/P	51	/٢	5P	7P	ABE	C 5P	ABE	C 5P	ABEC	ABEC							
		5P, 7P	5P	7P	5P, 7P	5P	7P	5P, 7P	5P	7P	5P, 7P	5P, 7P	5P,	7P									ABE	C 7P	ABE	C 7P	5P	6P
Über	Inkl.	Obere	Untere	Untere	Obere	Untere	Untere	Obere	Untere	Untere	Max.	Max.	Obere	Untere	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Obere	Untere	Obere	Untere	Max.	Max.
-	18	0	-5	-5	0	-5	-5	+1	-6	-6	2.5	5	0	-25	5	2.5	8	4	5	3.5	8	5	0	-25	0	-51	7.5	5
18	30	0	-6	-5	0	-6	-5	+1	-6	-6	2.5	5	0	-25	5	2.5	8	4	6	4	8	5	0	-25	0	-51	7.5	5
30	50	0	-6	-5	0	-6	-5	+1	-7	-6	2.5	5	0	-25	5	2.5	8	4	6	4	8	5	0	-25	0	-51	7.5	5

Vermerk (1): Gilt für die verschiedenen Flanschbreiten von Flanschlager Vermerk (2): Gilt für die Flansch-Rückseite.

Leaende

Legena	-		
d	Nennmass des Bohrungsdurchmessers	ΔDs	Abweichung des an einer Stelle gemessenen Aussendurchmessers
Δ dmp	Abweichung des mittleren Bohrungsdurchmessers in einer Ebene	VDp	Schwankung des Aussendurchmessers in einer einzelnen Radialebene
Δds	Abweichung eines einzelnen Bohrungsdurchmessers vom Nennmass	VDmp	Schwankung des mittleren Aussendurchmessers
Vdp	Schwankung des Bohrungsdurchmessers in einer einzelnen Radialebene.	Kea	Rundlauf des Aussenrings am zusammengebauten Lager
Vdmp	Abweichung des mittleren Bohrungsdurchmessers vom Nennmass	SD	Schwankung der Neigung der Mantellinie bezogen auf die Bezugsseiten- fläche
ΔΒs (ΔCs)	Abweichung der einzelnen Innen- und Aussenringbreite vom Nennmass	Sea	Gebauter Lageraussenring Planlauf mit Lauf
VBs (VCs)	Variation der Innen- und Aussenringbreite	VCs	Schwankungen der Aussenringbreite
Kia	Rundlauf des innenrings am zusammengebauten Lager	ΔD1s	Flanschversatz des Aussendurchmessers
Sd	Planlauf der Stirnseite in Bezug auf die Bohrung	∆C1s	Abweichung der Flanschbreite
Sia	Planlauf der Stirnseite in Bezug auf die Laufbahn des Innen- rings am zusammengebauten Lager	rsmin	Kleinste zulässige Einzelfasenbemessung (Untergrenze)
D	Nomineller Aussendurchmesser	rsmax	Grösste zulässige Einzelfasenbemessung (Höchstgrenze)
Δdmp	Abweichung des mittleren Bohrungsdurchmessers in einer Ebene	ramax	Grösster zulässiger einzelner Wellen- & Gehäuse Ausrundungsradius

Vermerk (1) Der Wert **I'** max in axialer Richtung des Lagers mit einer Nennbreite von weniger als 2mm, ist derselbe, wie der in Radialrichtung.


Toleranz, Klasse & Fasenbemessung von Lagern

Toleranzgrenzwerte (metrisch) der Fasenbemessungen von Radiallagern

I'smin = kleinste zulässige Einzelfasenbemessung (min. Limit)

Vermerk:

Die genaue Form der Fasenoberfläche ist nicht festgelegt, aber die Kontur darf in einer Axialebene nicht über den imaginären Kreisbogen von Radius rsmin, tangential zur Ringfläche und der Ringbohrung oder ausserhalb der zylindrischen Oberfläche, herausragen. (siehe Abb.)

Lebensdauer & Tragzahlen

Lebensdauer der Miniaturlager

Bei drehenden Lagern, werden die Innen- und Aussenringe und Wälzkörper ständig belastet. Dies führt zu einer Materialermüdung und schliesslich zu Lagerausfall. Die Gesamtzahl der Umdrehungen bevor ein Fehler auftritt wird als nominelle Lebensdauer bezeichnet.

Die Lebensdauer der Einzellager variiert beträchtlich, selbst wenn sie die gleiche Grösse, gleiches Material, gleiche Wärmebehandlung und gleichen Betriebsbedingungen aufweisen.

Statistisch gesehen, wird die Gesamtzahl der Umdrehungen, die von 90% einer genügend grossen Gruppe gleicher Lager erreicht oder überschritten wird, bevor erste Anzeichen von Materialermüdung auftreten, als nominelle Lebensdauer bezeichnet.

Dynamische Tragzahl "Cr"

Die dynamische Tragzahl eines Lagers mit drehendem Innenring und stationärem Aussenring ist die Last von konstanter Grösse und Gewicht, die eine ausreichend grosse Menge gleicher Lager mit einer nominellen Lebensdauer von einer Million Umdrehungen aushalten können.

Radiallager nehmen vor allem Radiallast auf. Werte für "Cr" in den Masstabellen des Kataloges gelten für Standard Hoch-Chromstahl. Für Edelstahl sollten 85% der Chromstahlwerte benutzt werden.

Lebensdauer Formel

Die Gleichung der nominellen Lebensdauer für dynamisch belastete Kugellager lautet wie folgt:

 $L_{10} = (Cr/P)^3 (X_{10}^6 \text{ Umdrehungen}), L_{10} = 16667/n \cdot (Cr/P)^3 (Stunden)$

wobei:

 L_{10} = Nominelle Lebensdauer

Cr = Dynamische Tragzahl (N)

n = rpm (Umdrehungen pro Minute)

L10h = Nominelle Lebensdauer in Betriebsstunden

P = Äquivalente Last (N)

Lebensdauer & Tragzahlen

Beispiele für nominelle Lebensdauer L₁₀h Werte

Betriebsbedingungen	Nominelle Lebensdauer L10h
Sehr seltener Betrieb	500
Kurz- oder periodischer Betrieb. Scheitern hat wenig Einfluss auf Funktion	4'000 - 8'000
Intermittierender Betrieb. Scheitern hat erheblichen Einfluss auf die Funktion	8'000 - 12'000
8 Stunden nicht-kontinuierlicher Betrieb	12'000 - 20'000
8 Stunden Dauerbetrieb	20'000 - 30'000
24 Stunden Dauerbetrieb	40'000 - 60'000
24 Stunden garantiert störungsfreien Betrieb	100'000 - 200'000

Ausführliche Lebensdauerformel

Die obige Lebensdauerformel gilt für den allgemeinen Gebrauch. In Fällen, bei denen eine Zuverlässigkeit von über 90% erforderlich ist und noch andere Einflüsse als Last und Geschwindigkeit oder Betriebsfrequenz zu berücksichtigen sind, bietet ISO 281,1990 eine ausführlichere Lebensdauerformel:

Lna=
$$a_1 \cdot a_2 \cdot a_3 \cdot (Cr/P)^3 \cdot 10^6$$
 (Umdrehungen)

wobei:

Lna = Modifizierte Lebensdauer in Millionen mit einer Zuverlässigkeit von (100 - n)%

(n = die Zuverlässigkeitsrate)

Cr = Dynamische Tragzahl (N)

P = Äquivalente dynamische Tragzahl (N)

a₁ = Faktor für Verlässlichkeit höher als 90%

a₂ = Faktor für nicht herkömmliches Material

a₃ = Faktor für nicht herkömmliche Betriebsbedingungen, speziell Schmierung

(1) Verlässlichkeitsfaktor a.

Wenn eine Zuverlässigkeit von über 90% erforderlich ist, sollte der entsprechende Faktor aus der folgenden Tabelle ausgewählt werden.

Verlässlichkeitsfaktor au

Verlässlichkeit	90	91	92	93	94	95	96	97	98	99	(99.6)	(99.9)
a ₁	1.00	0.92	0.84	0.77	0.64	0.62	0.53	0.44	0.33	0.21	(0.10)	(0.037)

(2) Material Faktor a₂

Verbesserungen in den Herstellungstechniken für Rohmaterial und in der Wärmebehandlung von Komponenten haben zu einer erweiterten Lebensdauer für Lager geführt.

Unser Standard- Lagerwerkstoff ist ein qualitativ hochwertiger vakuumentgaster Stahl, was zu einer längeren Lebensdauer der Lager beiträgt. Bei den, in diesem Katalog gegeben, Dynamischen Tragzahlen, wurde diese längere Lebensdauer mit einberechnet. Daraus ergibt sich eine Erhöhung der Lebensdauer in Stunden von einem Faktor von 2.2 und einem Faktor von 1.3 für die Lasttragfähigkeit. Der Materialfaktor $a_2 = 1$

Lebensdauer & Tragzahlen

(3) Betriebsbedingungen a₃

Dies ist ein Korrekturfaktor, um nicht herkömmliche Betriebsbedingungen für die Schmierung, Temperatur und die Last zu erfüllen. Unter guten Schmierbedingungen mit einem dauerhaften Ölfilm zwischen Wälzkörper und Ringen, den Faktor $a_3 = 1$. In ungünstigen Bedingungen (dm \cdot n $\le 10'000$), muss ein Faktor $a_3 < 1$ gewählt werden. (dm = mittlere Lagerdurchmesser = (D + d) / 2, n = Betriebsdrehzahl.)

Bei Temperaturen über 120°C treten grössere Dimensionsänderungen auf und die Materialhärte verschlechtert sich, was sich auf die Lagerlebensdauer auswirkt. Der Betriebsfaktor ft, zur Temperatur ist der folgenden Tabelle zu entnehmen:

Betriebstemperatur & Lebensdauer Kompensationsfaktor ft

Lager Temperatur (°C)	120	150	175	200	225	250	275	300
Temperatur Faktor (ft)	1.00	0.90	0.85	0.75	0.65	0.60	0.52	0.45

Hitzestabilisierte Lager, bei denen die Dimensionen auch über 120°C stabil bleiben, sind auf Anfrage erhältlich.

Statische Tragzahl "Cor"

Die Statische Tragzahl gilt für Lager, bei denen nur selten oder keine Drehbewegungen auftreten. Die Tragzahlen und Berechnungsmethoden in diesem Katalog basieren auf den in ISO 281 und ISO Empfehlungen NR.76 beschriebenen Verfahren und unter Berücksichtigung der aktuellen Standards der Lagertechnik.

Übermässige statische Last verursacht Verformungen an der Kontaktstelle zwischen Wälzkörper und Laufbahn. Als Standard der zulässigen statischen Last wird die statische Tragzahl "Cor" für Radiallager wie folgt angegeben: Maximaler Kontaktdruck an der Kontaktstelle zwischen Wälzkörper und Lagerring bis zu 4200 MPa und insgesamt bleibende Verformung des Lagers von ca. 0.01% des Durchmessers des Wälzkörpers. Die statische Tragzahl beträgt bei rostfreiem Stahl 80% von Standardlagerstahl.

Äquivalente Dynamische Lagerlast "P"

Lastbedingungen auf Lager sind in der Regel eine Kombination aus Radial- und Axiallasten. Um eine äquivalente Radiallast mit bestimmter Stärke und Richtung zu berechnen, verwenden wir folgende Formel:

Radiallastfaktor & Axiallastfaktor

Fa/(ZD ²)	e	Fa/I	r ≤e	Fa/I	Fr>e
- *** (== ')		X	Y	X	Y
0.172	0.19	1	0	0.56	2.30
0.345	0.22	1	0	0.56	1.99
0.689	0.26	1	0	0.56	1.71
1.030	0.28	1	0	0.56	1.55
1.380	0.30	1	0	0.56	1.45
2.070	0.34	1	0	0.56	1.31
3.450	0.38	1	0	0.56	1.15
5.170	0.42	1	0	0.56	1.04
6.890	0.44	1	0	0.56	1.00

P=XFr+Yfa(N)	
Fr = Radiallast (N) Fa = Axiallast (N)	X = Radiallastfaktor Y = Axiallastfaktor D = Kugeldurchmesser (mm)

Lebensdauer & Tragzahlen

Äquivalente Statische Radiallast "Po"

Für Kugellager auf die sowohl Radial- wie auch Axiallasten wirken, wird die statische Radiallast mit bestimmter Stärke und Richtung Äguivalente Statische Radiallast genannt.

Der höhere Wert der beiden unten gezeigten Formeln sollte verwendet werden.

$$P_0=0.6 \cdot Fr+0.5 \cdot Fa(N)$$
, $P_0=Fr(N)$

Äquivalenter Statischer Radiallast-Faktor "fs"

Die zulässige äquivalente statische Last hängt von der Statischen Tragzahl aber auch von der Anwendung und den Betriebsbedingungen ab. Dementsprechend verwenden wir einen experimentellen Wert, den Äquivalenten Statischen Radiallast-Faktor fs.

fs=Cor/Po fs = Äquivalenter Statischer Radiallast-Faktor Cor = Statische Tragzahl (N) Po = Äquivalente statische radiale Belastung (N)	
Betriebsbedingunen:	fs:
Normalbetrieb	1.0
Stossbelastung	1.5
Stille und hochgenaue Rotation	2.0

Montage der Lager

Die Bedeutung des fachgerechten Einbaus der Lager

Ein Lager kann nur seine volle Leistung erreichen, wenn es korrekt auf der Welle und dem Gehäuse sitzt. Ein ungenügender Presssitz auf Passflächen kann dazu führen, dass Lagerringe sich in Umlaufrichtung verschieben. Geschieht dies, tritt erheblicher Verschleiss an der Passfläche auf und sowohl die Welle wie auch das Gehäuse werden beschädigt. Darüber hinaus können abrasive Partikel in das Lager eindringen und Vibrationen, übermässige Hitze und Schäden an Laufbahnen verursachen. Es ist daher erforderlich, Lagerringe unter dynamischer Last mit einem ausreichenden Pressitz zu versehen, um Verschiebungen zu verhindern. Bei der Verwendung von dünnen Spannlagern unter niedriger Last sollten die Lager durch eine Mutter befestigt werden. Bei statisch belasteten Lagern ist eine Montage mit Presssitz normalerweis nicht notwendig. Nur, wenn sie hohen Vibrationen ausgesetzt sind, brauchen sowohl Innen- als auch Aussenringe einen Presssitz.

Einbau von Lager und Wellen

Zustand (Stabbuelle)	Zustand (Stahlwelle)		Wellen-Toleranzklasse		
Zustanu (staniwene)		durchmesser	Typ: schmal	Andere	
Innenring Rotationslast oder unbestimmte Last-Richtung	Leichte Last <= 0.06Cr oder Fluktuierende Last	$10 \le d \le 18$ $18 \le d \le 30$ $30 \le d \le 50$	h5 h5 h5	js5 js5 js5	
Standardlast = 0.06 - 0.12Cr		$10 \le d \le 18$ $18 \le d \le 30$ $30 \le d \le 50$	js5 js5 js5	j5 k5 k5	
Aussenring	Notwendig, wenn der Innen- ring sich leicht um die Welle dreht	Alle Bohrungsdurchmesser	g5	g6	
Rotationslast	Nicht notwendig, wenn der Innenring sich leicht um die Welle dreht	Alle Bohrungsdurchmesser	h5	h6	

Montage der Lager

Einbau von Lagern und Gehäuse

Bedienung	Bedienung (Einteiliges Gehäuse)		Toleranzklasse Gehäuse	
		des Aussenrings	Typ: schmal	andere
	Variierende Last	Leicht zu bewegen	H6	H7
	Leichte oder Standardlast	Leicht zu bewegen	H7	H8
Unbestimmte	Hohe Temperatur des Innenring und der Welle	Leicht zu bewegen	G6	G7
0		In der Regel unmöglich	VE	V.C
Lastrichtung	Leichte oder Standardlast, präzise Rotation	zu bewegen	K5	K6
		Möglich zu bewegen	JS6	J6
	Leiser Betrieb	Leicht zu bewegen	H6	H6
	Leichte oder Standardlast	In der Regel möglich	JS6	J7
	Ecicitic oder Standardiast	zu bewegen	330	37
Unbestimmte	Standard oder schwere Last	In der Regel unmöglich	K5	K7
Lastrichtung	3131131313131313131313131313131313131313	zu bewgen		
	Grosse Stossbelastung	Unmöglich zu bewegen	M5	M7
	Leichte oder schwankende Last	Unmöglich zu bewegen	M5	M7
Aussenring	Standard oder schwere Last	Unmöglich zu bewegen	N5	N7
rotierende Last	Schmaler-Typ Gehäusesitze, schwere Last oder grosse Stossbellastung	Unmöglich zu bewegen	P6	P7

Passungen - Lagersitze

Rotierender Ring	Last	Belastungsfall	Passungen
Innenring	statisch	Umfangslast auf dem Innenring	Presssitz für Innenring
Aussenring	rotierend	Punktlast auf dem Aussenring	Spielpassung für Aussenring
Aussenring	statisch	Umfangslast auf dem Aussenring	Spielpassung für Innenring
Innenring	rotierend	Punktlast auf dem Innenring	Presssitz für Aussenring
Im Fall von schwanken- der Lastrichtung oder Schieflast	rotierend oder statisch	Unbestimmte Last-Richtung	Presssitz für Innen-und Aussenring

Montage der Lager

Berechnung der Passungen

(1) Passung Druck und Dimensionsänderungen von Innen- und Aussenring

Die richtige Passform für jede Anwendung wird ermittelt in dem verschiedenen Bedingungen wie beispielsweise Last, Geschwindigkeit, Temperatur, Montage und Demontage des Lagers in Betracht gezogen werden. Der Presssitz sollte grösser als normal in dünnen Gehäusen, Gehäusen aus weichem Material oder Hohlwellen sein.

(2) Interferenzlast

Der Presssitz der Welle und dem Innenring verringert sich unter radialer Last. Die Abnahme der Passung der Welle und des Innenrings wird nach der folgenden Formel berechnet:

Der höhere Wert der beiden unten gezeigten Formeln soll verwendet werden.

$$\Delta dF = 0.08 \cdot \sqrt{d/B \cdot Fr} \times 10^{-3} \text{ (mm)}$$

 $\Delta dF = 0.02 \cdot Fr/B \cdot 10^{-3} \text{ (mm)}$

(3) Einfluss der Temperatur auf Lager, Welle und Gehäuse

Jeder Innenring, Aussenring und Wälzkörper eines unter Last rotierenden Lagers erzeugt Wärme, die Auswirkungen auf die Passungen der Welle und des Gehäuses hat. Unter der Annahme einer Temperaturdifferenz innerhalb des Lagers und dem Gehäuse $\Delta T(^{\circ}C)$, von der Gegenfläche der Welle und des Lagers $(0.10\text{-}0.15)\Delta T$. Folglich wird ΔdT , die Abnahme des Innenring-Presssitzes aufgrund einer Temperaturänderung, aus der folgenden Formel berechnet:

$\Delta dT = (0.1$	$\Delta dT = (0.10 - 0.15) \cdot \Delta T \cdot a \cdot d = 0.0015 \cdot \Delta T \cdot d \cdot 10^{-3} (mm)$				
ΔdT:	Verringerung der Interferenz durch den Temperaturunterschied (mm)				
ΔΤ:	Temperaturunterschied zwischen Lager und umgebendem Gehäuse (°C)				
a:	Der Wärmeausdehnungskoeffizient für Wälzlagerstahl = 12.5X10 ⁻⁶ (I/°C)				
	Der Wärmeausdehnungskoeffizient für Edelstahl = 10.3X10 ⁻⁶ (I/°C)				
d:	Nennweite des Lagers (mm)				

Es sollte auch beachtet werden, dass sich aufgrund von Temperaturunterschieden, die Passung weitet

(4) Effektive Interferenz, Oberflächenrauhigkeit und Genauigkeit

Die Oberflächenrauheit wird bei der Montage geglättet und die effektive Interferenz wird kleiner als die theoretische Interferenz. Die Qualität der Oberflächenrauheit einer Gegenfläche hat einen Einfluss darauf, wie viel diese theoretische Interferenz abnimmt. Die effektive Interferenz kann in der Regel wie folgt berechnet werden:

Geschliffene Wellen:	$\Delta d=d/(d+2)\cdot \Delta da \ (mm)$
Gedrehte Wel- len:	$\Delta d=d/(d+3)\cdot \Delta da \ (mm)$
Δd:	Effektive Interferenz (mm)
Δda:	Theoretische Interferenz (mm)
d:	Nennweite des Lagers (mm)

Durch die Kombination dieser Faktoren, wird der benötigte theoretische Presssitz für Innenring und Welle, bei der der Innenring einer rotierenden Last ausgesetzt ist, wie folgt berechnet:

$$\Delta da \ge (\Delta dF + \Delta dT) ((d+3)/d \text{ oder } (d+2)/d) (mm)$$

Normalerweise haben Wellen- und Gehäusesitze, wie auf der nächsten Seite angegeben, die Genauigkeits- und Rauheitsanforderungen zu erfüllen.

Montage der Lager

Genauigkeit und Rauheit der Wellen- und Gehäusesitze

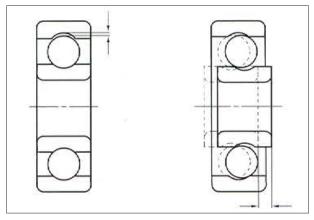
	Welle	Gehäuse
Rundheit	Unter 50% der Wellendurchmes- sertoleranz	Unter 50% der Gehäusebohrungsdurch- messertoleranz
Zylindrizität	Unter 50% der Wellendurchmes- sertoleranz innerhalb Lagerbreite	Unter 50% der Gehäusebohrungsdurch- messertoleranz in Lagerbreite
Rechtwinkligkeit	≤3/	1000(0.17°)
Rauheiten von Gegenfläche	Rmax 3.2	Rmax 6.3

Einbau von Lagern mit extra engen oder leichten Presssitzen kann zu frühem Versagen der Lager führen. Um sichere Betriebsbedingungen zu gewährleisten, müssen die Toleranzschwankungen der Wellensitze, Gehäuse- und Lagerbohrungen und Aussendurchmesser reduziert werden. Wir empfehlen die Toleranzzonen in zwei Gruppen aufzuteilen und eine selektive Montage anzuwenden. In zwei Toleranzgruppen sortierte Lager sind auf Anfrage verfügbar. Diese Lager sind wie folgt gekennzeichnet:

Selektive Klassifizierung der Aussen und Bohrungsdurchmesser-Toleranz & Anzeigemarkierung

	Toleranz der Boh- rungsdurchmesser	0~-D/2		-D/2~-D		0~-D	
Toleranz der Aussendurchmesser	Marke	1		2		0	
0~-d/2	1	C11	ZC2	C12	ZC	C10	
-d/2~-d	2	C21	ZC3	C22		C20	
0~-d	0	C01		C02			

HINWEIS:


- 1. Dies ist wird sowohl auf ABEC 5P als auch P5 Lager angewandt.
- 2. Bei Anfragen spezifizieren Sie die unten aufgeführte Markierung.
- ZC1 2 Selektive Klassifizierungen für Bohrungsdurchmesser-Toleranz (0 - -d / 2 , -d / 2 - d)
 - 1 Selektive Klassifizierung für Aussendurchmesser-Toleranz (0 -D)
- ZC2 1 Selektive Klassifizierung für Bohrungsdurchmesser-Toleranz (0 d)
 2 Selektive Klassifizierungen für Aussendurchmesser-Toleranz (0 -D / 2 , -D / 2 - D)
- ZC3 4 Selektive Klassifizierungen sowohl für Bohrungs- als auch Aussendurchmesser-Toleranz (0 -d / 2 , -d / 2 d , O -D / 2 , -D / 2 -D)
- D Mindestwert der Aussendurchmesser-Toleranz
- d Mindestwert der Bohrungsdurchmesser-Toleranz

Lager-Spielraum

Lagerluft und Standardwerte

Als Lagerluft wird das Spiel zwischen Aussenring, Innenring und Wälzkörper bezeichnet. Im Allgemeinen wird die Menge der Aufund Abwärtsbewegungen des Aussenrings in Bezug auf den feststehenden Innenring als Radialluft und die Rechts-Links-Bewegungen als Axialluft bezeichnet. Lagerluft ist ein wichtiger Faktor im Betrieb und hat Einfluss auf andere Faktoren, wie beispielsweise Lärm, Vibration, Wärme, und Materialermüdung. Rillenkugellager werden in der Regel durch ihre Radialluft eingestuft. Bei der Messung der Lagerluft wird das Lager einer Standard Last ausgesetzt um vollen Kontakt zwischen allen Lagerkomponenten zu gewährleisten. Unter einer solchen Last, ist der Messwert größer als der tatsächliche, für Radialluft angegebene Wert; Grund dafür ist die elastische Verformung. Die Differenz wird, durch die in den untenstehenden Tabellen angegeben Faktoren, kompensiert.

Lagerluft/Lagerspielraum

Radialluft Axialluft

Radialluft von Miniaturlager

Unit **µ** m

Zwischenraum Symbol		MC1	MC2	MC3	MC4	MC5	MC6
Zwischenraum	Min.	0	3	5	8	13	20
	Max.	5	8	10	13	20	28

Vermerk: 1. Standard - Zwischenraum MC3.

^{2.} Für die Radialluftmessung, Abweichungen mit den unten aufgeführten Ausgleichsfaktor ausgleichen

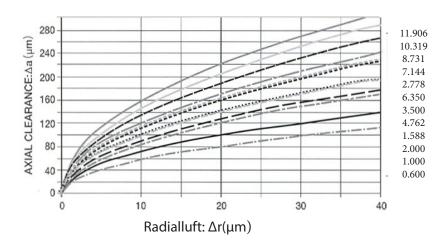
Zwischenraum Symbol	MC1	MC2	MC3	MC4	MC5	MC6
Kompensationsfaktor	1	1	1	1	2	2

Messlasten: Miniaturlager 2.5N (0.25kgf), kleine Lager 4.4N (0.45kgf)

Radialluft von Standard Radial-Kugellager

Unit μ m

Nenn	wert				Zwischenraum							
Durchmesser d(mm)		C2		CN(C	CN(CO)		C3		C4		C5	
Über	Inkl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
10		0	7	2	13	8	23	14	29	20	37	
10	18	0	9	3	18	11	25	18	33	25	45	
18	24	0	10	5	20	13	28	20	36	28	48	
24	30	1	11	5	20	13	28	23	41	30	53	
30	40	1	11	6	20	15	33	28	46	40	64	
40	50	1	11	6	23	18	36	30	51	45	73	


Vermerk: 1. Für die Radialluft messung, Abweichungen mit den auf der nächsten Seite aufgeführten Ausgleichsfaktoren ausgleichen.

Lager Spielraum

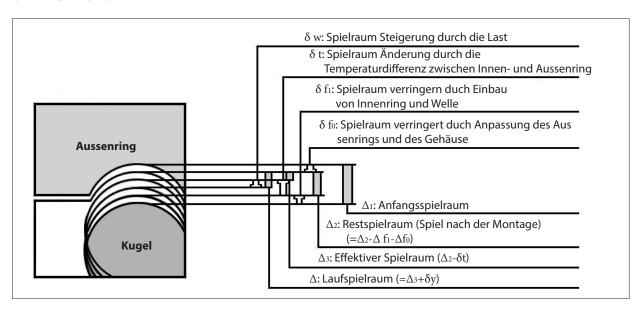
Bohrungsdurchmesser eines Nominallagers d (mm)		Messlast	Kompensationsfaktor					
Über	Inkl.	N (kgf)	C2	CN (C0)	C3	C4	C5	
10 (inkl.)	18	24.5 (2.5)	3-4	4	4	4	4	
18	50	49 (5)	4-5	6	6	6	6	

Beziehungen zwischen Radialluft & Axialluft

Der Wert der Axialluft wird aus dem Kugeldurchmesser, dem Aussen- und Innenringlaufbahnradius und der Radialluft bestimmt. Normalerweise beträgt dieser etwa 10 Mal den Wert der Radialluft. Die Auswahl einer kleinen Radialluft oder eines extra grossen Presssitzes, um die interne Axialluft nach der Montage zu reduzieren, wird nicht empfohlen.

$\Delta a = 2\sqrt{\Delta r(r_{o+}r_{i}Da)} \text{ (mm)}$	
$\begin{split} &\Delta a = &Axialluft \ (mm) \\ &r_0 = &Aussenringlaufbahnradius \ (mm) \\ &Da = &Kugeldurchmesser \ (mm) \\ &\Delta r = &Radialluft \ (mm) \\ &r_i = &Innenringlaufbahnradius \ (mm) \end{split}$	

Auswahl des Lagerspiels


Theoretisch ist maximale Lebensdauer der Lager mit sehr leichter Vorspannung. Jedoch kann selbst ein leichter Anstieg in dieser theoretischen Vorspannung eine wesentlich nachteilige Wirkung auf die Lagerlebensdauer haben. Positives Lagerspiel sollte daher ausgewählt werden. In der Regel wird MC3 für kleine oder Miniaturlager, und Standardspiel für allgemeine Lager verwendet. Der Freiraum für Dünnringlager sollte nie grösser sein als "Standard".

Auswahl der Radialluft

Einsatzbedingung	Zwischenraum
Spielpassung für Innen- und Aussenring. Geringe Axiallast. Keine Axiallast-Trage-Anforderungen. Ausgewählte Lager mit reduzierter Radialluft. Weniger Vibration und Lärm. Niedrige Drehzahlen.	MC1, MC2, C2
Geringeres Reibmoment. Standard Axiallast. Mittlere Axiallast-Trage-Anforderungen. Leichter Presssitz für Innenring. Spielpassung für Aussenring. Normale / niedrige Drehzahlen.	MC3, MC4, CN(C0)
Extrem niedriges Reibungsmoment. Hohe Axiallast. Hohe Axiallast-Trage-Anforderungen. Schwerer Presssitz um grosse Lasten oder Schocklasten auszuhalten. Grosses Temperaturgefälle vom Innenring zum Aussenring. Hohe Wellen-Durchbiegung.	MC5, MC6,C3, C4, C5

Lager Spielraum

LAGERLUFTBERRECHNUNG

(1) Laufspielraum

Das Laufspiel ist der sich ergebende Spielraum nachdem Belastung, Temperaturdifferenz und Montage berücksichtigt werden.

$$\Delta = \Delta 1 - (\delta t + \delta f) + \delta w(mm)$$

(2) Luftverminderung durch Temperaturdifferenz zwischen Innen- und Aussenring

In einem Lager wird die höchste Temperatur im Wälzkörper generiert, gefolgt von dem Innenring, womit der Aussenring die niedrigste Temperatur aufweist. Da es unmöglich ist, die Temperatur eines Wälzkörpers zu messen, wird in der Praxis die Temperatur des Innenrings verwendet.

$$\delta t = a \cdot \Delta T \cdot D_0(mm)$$

(3) Luftverminderung durch Anpassung

Wenn ein Lager auf einer Welle oder in ein Gehäuse mit einem Presssitz eingepasst wird, verringert sich das interne Spiel des Lagers.

$$\delta f = \delta f_1 + \delta f_0 = \Delta db \cdot d/db \cdot ((1 - (d_0/d)^2))/(1 - (d_0/db)^2)) + \Delta Da \cdot Da/D \cdot ((1 - (D/Dh)^2)/(1 - (Da/Dh)^2)) (mm)$$

(4) Abstand Anstieg und Last

Last auf einem Lager verformt dieses elastisch und erhöht die Lagerluft.

$$\begin{split} \delta & \text{ w=$C} \cdot \left((5 \cdot Fr) / (Z \cdot \cos \alpha \,) \right)^{(2/3)} \cdot (1/dw)^{(1/3)} \quad \text{(mm)} \\ \text{Der anfängliche Kontaktwinkel α_0 wird aus den beiden folgenden Formeln berechnet:} \\ & \cos \alpha_0 / \cos \alpha = 1 + C / \left(2 \cdot m - 1 \right) \cdot \left(\left. Fa \, / \, \left(\, 9.8 \cdot Z \cdot Dw^2 \cdot \sin \alpha \, \right)^{(2/3)} \right. \\ & 1 - \cos \alpha_0 = \Delta r / (2 \cdot DW \cdot (2xm - 1)) \end{split}$$

Lager Spielraum

Symbole

ΔΤ	Temperaturdifferenz zwischen Innen- und Aussenring	m	Schmiegung
D ₀	Aussenringlaufbahndurchmesser	Z	Anzahl der Kugeln
Δdb	Spielraum des Innenrings auf der Welle	Dw	Kugeldurchmesser
do	Bohrungsdurchmesser der Hohlwelle	α	Kontaktwinkel
Dn	Aussendurchmesser des Gehäusesitzes	αo	Anfänglicher Kontaktwinkel
ΔDa	Spielraum des Aussenrings im Gehäuse	Fa	Axiallast
db	Durchschnittlicher Aussendurchmesser des Innenrings	Fr	Radiallast
Da	Durchschnittlicher Aussendurchmesser des Aussenrings	Δr	Radialluft
a	Koeffizient der thermischen Ausdehnung für Lagerstahl	С	Material-Elastizitätsfaktor

Allgemeine Lager	C=0.00218	m=0.525
Instrument Lager	C=0.00287	m=0.560

Schmierung der Lager

Aufgabe der Schmierung

Die Schmiermethode und das Schmiermittel haben eine direkte Auswirkung auf die Lagerlebensdauer; deshalb sollte das für jede Anwendung jeweils am besten geeignete Schmiermittel ausgewählt werden. Auswirkungen der Schmiermittel werden wie folgt beschrieben:

(1) Verringerung von Reibung und Verschleiss

Es verringert die Rollreibung zwischen der Laufbahn und der Wälzkörper, die Gleitreibung zwischen Wälzkörper und Käfig und die Gleitreibung der Führungsfläche zwischen dem Käfig und dem Lagerring.

(2) Verringerung der Wärmeerzeugung

Es leitet sowohl die Wärme die im Inneren des Lagers erzeugt wird, wie auch die von aussen zugeführte Wärme ab, wodurch eine Überhitzung des Lagers und eine Verschlechterung des Schmiermittels verhindert wird.

(3) Der Schutz vor Korrosion und Verunreinigungen

Es verhindert die Korrosion von Wälzkörper, Lagerringen und Käfigen und verhindert das Eindringen von Verunreinigungen und Feuchtigkeit in das Lager.

Geforderte Eigenschaften des Schmiermittels

- (1) Geringe Reibung und Abrieb
- (2) Eine hohe Stabilität gegen Wärme, gute Wärmeleitfähigkeit
- (3) Starker Ölfilm
- (4) Nicht korrosiv
- (5) Stellen eine gute Barriere gegen Staub und Feuchtigkeit dar
- (6) Behalten eine stabile Viskosität

Schmierung der Lager

Standard Schmiermittel

Schmiermittel	Marke	МТО	Hersteller	MIL Standard	Betriebs Temperatur (°C)	Spezifische Schwerkraft
STD. Fett	Multemp SRL	G105	Kvodo Yushi		-40 - 150	0.93
	Alvania 2S	G102	Shell Oil Co.		-25 - 120	0.92
STD. ÖI	Aero Shell Fluid 12	L503	Shell Oil Co.	MIL-PRF-6085D	-50 - 205	0.93

Schmierungsmethode

Es gibt zwei Arten von Schmiermittel: Öl oder Fett. Es ist wichtig, das richtige Schmiermittel und Schmiermethode für jede Anwendung und deren Bedingungen auszuwählen.

Schmiermittel Öl und Fett

	Schmiermittel Öl	Schmiermittel Fett
Drehgeschwindigkeit	Tief-/Mittel-/Hochgeschwindigkeit	Tief-/Mittelgeschwindigkeit
Schmiermittleffizienz	Ausgezeichnet	Gut
Kühleffekt	Gut	Keine
Drehmoment	Vergleichsweise gering	Vergleichsweise hoch
Schmiermittel Lebensdauer	Lange	Vergleichsweise kurz
Schmiermittelersatz	Einfach	Schwierig
Schmiermittelaustritt	Sollte nicht verwendet werden, wo ein Auslaufen von Öl inakzeptabel ist.	Geringer Fettaustritt
Filtration von Verunreinigungen	Einfach	Schwierig
Dichtungstechnik	Komplex	Einfach

Fett Füllvolumen

Cymhol	Füllvolumen (0/)	Betriebszustand			
Symbol	Füllvolumen (%)	Geschwindigkeit	Last		
M	70±10	Tief	Schwer		
S	50±10	Tief	Mittel		
G	40±10	Mittel	Mittel		
L	30±10	Mittel	Mittel		
Q	25±5	Mittel	Mittel		
K	20±5	Hoch	Leicht		
X	10±5	Hoch	Leicht		

Vermerk: Leichte Last (≤0.06Cr) Standard Last (≤0.12Cr)

Schmierung der Lager

Kriterien für die Auswahl des Schmieröls

Betriebs Temperatur	de	ISO Viskositätsgrad des Schmieröls (VG)			
der Lager (°C)	dn	Mittlere Last	Schwerlast/Stosslast		
-30 - 0	Bis zu zulässigen Dreh- zahlen	15, 22, 32	32, 46		
	Bis zu 15000	32, 46, 68	100		
060	15000 - 80000	32, 46	68		
0 - 60	80000 - 150000	22, 32	32		
	150000 - 500000	10	22, 32		
	Bis zu 15000	150	220		
60 100	15000 - 80000	100	150		
60 - 100	80000 - 150000	68	100, 150		
	150000 - 500000	32	68		
100 - 150	Bis zu zulässigen Dreh- zahlen	320			

Vermerk: 1. Wenn schwere Lasten bei niedrigen Drehzahlen auftreten, sollte ein Schmieröl mit hoher Viskosität verwendet werden

- 2. Diese Tabelle gilt für Ölbadschmierungssysteme und Ölumlaufsysteme.
 3. dn = Lagerbohrungsdurchmesser d(mm) · Drehzahl n (rpm)

Herkömmliche Öl-Marken und Effizienz

Hersteller	Marke	Code	Schmier- basis	Brenn Punkt (°C)	Viskosität (m²/s)	Betriebstem- peratur (°C)	Genehmigter Standard
	Aero Shell Fluid 31	AF1	Diester	237	14.33 (40°C)	-40 - 204	MIL-PRF-83282D
Shell Oil Co.	Aero Shell Fluid 12	AF2	Diester	220	8.9 (54.4°C)	-50 - 205	MIL-PRF-6085D
	Aero Shell Fluid 3	AF3	Mineral	155	10.0 (38°C)	-47 - 115	MIL-PRF-7870C
Anderson Oil Co.	Windsor Lube L-245X	WL2	Diester	215	14.0 (38°C)	-55 - 175	MIL-PRF-6085D
Dupont,E.I.	Krytox 143AZ	KAZ	fluoriert	-	12.4 (40°C)	-54 - 149	-
Kluber lub.	Isoflex PDB38	PD8	Diester	210	12.0 (40°C)	-55 - 100	-
Anderol Co.	Anderol 402	A42	Diester	227	12.4 (40°C)	-54 - 177	MIL-PRF-6085D
Nippon Oil Corp.	Antirust P2100	002	Mineral	166	13.0 (40°C)	-20 - 115	VV-L-800c

Schmierung der Lager

Herkömmliche Fett-Marken & Effizienz

Hersteller	Marke	Code	Verdickungs- mittel	Schmiermittelbasis	Tropf- punkt (°C)	Konuspenet- ration: arbeitet (60 Schläge)	Betriebstem- peratur (°C)	Genehmigter Standard
	Alvania 1S	AV1	Lithium	Mineral	182	323	-35 - 120	-
	Alvania 2S	AV2	Lithium	Mineral	185	275	-25 - 120	-
	Alvania3S	AV3	Lithium	Mineral	185	242	-20 - 135	-
	Alvania RLQ	RLQ	Lithium	Mineral	195	275	-30 - 120	-
	Aero Shell N0.7	AG7	Microgel	Diester	260	296	-73 - 149	MIL-PRF-83282D
	Aero Shell N0.14	AG4	Kalzium	Diester	148	273	-54 - 93	MIL-G-25537C
	Aero Shell N0.15	AG5	Fluortelomer	Silikon	260	290	- 73 - 232	MIL-G-25013E
	Aero Shell N0.16	AG6	Microgel	Polyester, Mineral	260	308	-54 - 204	MIL-G-25760A
Shell Oil Co.	Aero Shell N0.17	AGB	Microgel	Diester	260	295	-73 - 149	MII-G-21164D
	Aero Shell N0.22	AG2	Microgel	Synthetischer Kohlen- wasserstoff	260	275	-65 - 204	MIL-PRF-81322F
	Alvania EP2	AE2	Lithium	Mineral	184	284	-20 - 110	-
	Retinax CL2	RXA	Lithium	Mineral	181	284	-15 - 130	-
	Shell Cassida HDS2	HS2	Aluminium Komplex	PAO	240	280	-30 - 120	NSF(USDA)H1
	Shell Cassida RLS2	RL2	Aluminium Komplex	PAO	240	275	-35 - 120	NSF(USDA)H1
Kyodo Yushi	Multemp PS N0.2	PS2	Lithium	Diester, Mineral	190	275	- 55 - 130	-
Nyodo rusili	Multemp SRL	SRL	Lithium	Diester, Mineral	191	245	-40 - 150	-
	Staburags NBU12	NB2	Barium	Mineral	220	270	-35 - 150	NSF(USDA)H2
	Staburags NBU12/300KP	NB3	Barium	Mineral	220	300	-35 - 150	-
	Staburags NBU8 EP	NB8	Barium	Mineral	220	280	-35 - 150	NSF(USDA)H2
	Isoflex NBU15	NB5	Barium	Diester, Mineral	200	280	- 40 - 130	MIL-G-25760A
	Isoflex TOPAS NB52	B52	Barium	synthetisch	220	280	-60 - 160	-
	Isoflex Alltime SL2	AS2	Lithium	Diester	180	280	-70 - 150	-
	Isoflex LDS18 Special A	L8A	Lithium	Diester	190	280	-60 - 130	MII-G-23827B
Kluber Lub.	Isoflex Super LDS18	SL8	Lithium	Diester	190	280	-60 - 130	MIL-G-7118A
Muder Eub.	Isoflex PDB38 CX2000	PDC	Lithium	Synthetischer Kohlen- wasserstoff	-	-	-70 - 120	-
	Barielta IEL	IEL	PTFE	fluoriert	-	280	-35 - 220	-
	Barielta IEL/V	IEV	PTFE	fluoriert	-	280	-65 - 200	-
	Barielta IMI	IMI	PTFE	fluoriert	-	280	-50 - 220	-
	Barielta IMI/V	IMV	PTFE	fluoriert	-	280	-50 - 220	-
	Barielta L55/2	L55	PTFE	fluoriert	-	280	-35 - 260	NSF(USDA)H2
	Barielta IS	BS1	PTFE	fluoriert	-	280	-35 - 260	-
	Molykote 33M	МЗМ	Lithium	Silikon	200	260	-70 - 180	-
	Molykote 33L	M3L	Lithium	Silikon	200	300	-70 - 180	-
Dow Corning Co.	Molykote 44M	M4M	Lithium	Silikon	210	260	-40 - 200	-
	Molykote BR2 Plus	BR2	Lithium	Mineral	180	280	-30 - 150	-
	Molykote FS3451	F35	PTFE	fluoriert	232	310	-40 - 200	-
Dupont, E.I.	Krytox 240AC	K24	PFPE	fluoriert	-	282	-35 - 288	MIL-G-27617
Dupont, E.i.	Krytox 240AZ	K2Z	PFPE	fluoriert	-	285	-54 - 149	MIL-G-27617
	Beacon325	B32	Lithium	Diester	190	274	-60 - 120	-
Esso Standard	Templex N3	TX3	Lithium Komplex	Mineral	260	230	-30 - 160	-
Mobil Oil Co.	Mobil N0.28	MG2	Bentonite	Synthetischer Kohlen- wasserstoff	262	280	-62 - 204	MII-G-81322E
	Mobilux EP2	MGE	Lithium	Mineral	202	280	-30 - 130	-
Caltex	Chevron RPM Grease SRI-2	SRI2	Lithium	Mineral	243	280	-30 - 175	-
Nippon Grease Co.	Nig Ace W	NAW	Diurea	synthetisch	268	256	-30 - 150	-
Shinetsu Chemical Co.	Silicolube G40M	G40	Lithium	Silikon	210	260	-30 - 200	MIL-L-15719A

Maximal zulässige Drehzahlen

Jeder Lagertyp hat seine eigene Grenzgeschwindigkeit. Die höchstmögliche theoretische Drehzahl, die das Lager mit Sicherheit halten kann, auch wenn Wärmeentwicklung durch interne Reibung auftritt, wird maximalzulässige Drehzahl genannt.

Die zulässige Drehzahl ist von Lagertyp, Art des Käfigs, Schmierstofftyp, Belastung und Kühlbedingungen, denen das Lager ausgesetzt, abhängig.

Für Kontaktgummidichtungen (2RS -Typ) werden die zulässigen Drehzahlen durch die Umfangsgeschwindigkeit der Dichtlippe begrenzt. Normalerweise betragen diese ca. 50 - 60% von derjenigen von berührungslosen Gummidichtungen. Wenn Leichtkontakt-Gummidichtungen erforderlich sind, muss dies bei der Bestellung festgelegt werden. Wenn hohe Belastungen auftreten, müssen die zulässigen Drehzahlwerte reduziert werden und die folgenden zusätzlichen Faktoren angewendet werden, ausser unter normalen Betriebsbedingungen (Cr/P<12, Fa/Fr>0.2)

Kompensation für maximal zulässige Drehzahl in Abhängigkeit vom Lastverhältnis

Cr/P	5	6	7	8	9	10	11	12
Kompensationsfaktor	0.72	0.79	0.85	0.90	0.93	0.96	0.98	1.00

Kompensation für zulässige Höchstgeschwindigkeit unter der kombinierten axialen und radialen Belastung

Fa/Fr	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00
Kompensationsfaktor	1.00	0.95	0.93	0.91	0.89	0.88	0.87	0.86

Wenn das Lager auf über 70% des zulässigen Drehzahlwerts arbeitet, sollte ein Schmiermittel für Hochgeschwindigkeit ausgewählt werden. Die Werte gelten für die zulässige Geschwindigkeit für Anwendungen mit horizontalen Wellen und mit angemessener Schmierung. Mit vertikalen Wellen sollte nur 80 % der Maximaldrehzahlwert verwendet werden. Dies ist notwendig aufgrund der reduzierten Käfigführung und reduzierten Schmiermittelrückhaltung bei dieser Art der Anwendung.

Reibmoment & Temperatur

Reibmoment

Das Reibmoment von Wälzlagern variiert unter wechselnden Last- und Schmierbedingungen. Wenn das Fett als Schmiermittel verwendet wird, muss die Fettbeständigkeit zum Reibmoment des Lagers hinzugerechnet werden.

Bei angemessener Schmierung unter normalen Belastungsbedingungen (Cr / P > 12, Fa / Fr < 0.2) kann das Reibmoment eines Lagers wie folgt ausgedrückt werden:

 $M = \mu \cdot F \cdot d/2 (N \cdot mm)$

M: Reibmoment (N \cdot mm)

F: Lagerlast (N)

d: Wellendurchmesser (mm)

μ: =0.0015 Reibungskoeffizient

Reibmoment & Temperatur

Temperaturanstieg

Reibung und Fettwiderstand können die Lagertemperatur erhöhen. In der Anfangsphase des Betriebs steigt die Innenlagertemperatur schnell: Sobald die Wärme sich auf die Welle und das Gehäuse ausbreitet und die Kühlwirkung des Schmiermittels zu wirken beginnt, stabilisiert sich die Temperatur. Konstant hohe Temperaturen führen zu einer Reduzierung der Lagerluft, einer Verschlechterung der Laufgenauigkeit und des Schmiermittels und damit zu einer Verringerung der Lagerlebensdauer. Es ist wichtig, die Wirkung von Temperaturerhöhungen bei der Auswahl des Lagers zu berücksichtigen.

Wesentliche Regeln für die Auswahl & Behandlung von Lagern

Hinweise zur Auswahl

- Die Effizienz der Dünnringlagertypen kann durch die Genauigkeit der Wellen- und Gehäusesitze stark betroffen sein. Die Genauigkeit der umgebenden Struktur muss so sein, dass sie sich nicht nachteilig auf den Betrieb des Lagers auswirken. Wenn Sie irgendwelche Fragen haben, insbesondere in Bezug auf die Serien 670 und 680, kontaktieren Sie uns bitte.
- Bei Anwendungen mit Stahlkronenkäfige (W-Typ), bei denen eine hohe Beschleunigung, grosse Lasten, Schocklasten oder vertikale Wellen auftreten, oder bei denen Öl das einzige zur Verfügung stehende Schmiermittel ist, kontaktieren Sie uns bitte.
- Bei der Auswahl von Passungsspielraum und Fett-Typ sollten Drehzahl, Lastbedingungen und Temperatur berücksichtigt werden, um vorzeitigen Lagerausfall zu verhindern.
- Vollrollige Kugellager eignen sich für niedrige Geschwindigkeit und schwere Radiallastbedingungen. Es besteht die Gefahr, dass Kugeln, selbst unter einer leichten Axiallast, durch den Füllschlitz aus dem Lager geschoben werden. Aus diesem Grund sind vollrollige Kugellager nicht zur Aufnahme axialer Kräfte geeignet.

Hinweise im Umgang

- Der eigentliche Montagebereich sollte staubfrei gehalten werden, da jede Verunreinigung eine nachteilige Wirkung auf den Betrieb und die Lebensdauer der Wälzlager hat. Wenn irgendeinen Zweifel an der Sauberkeit eines Lagers besteht, kann es mit einem geeigneten Mittel gewaschen und dann nachgeschmiert werden.
- Bei der Montage der Lager, dürfen die Passkräfte nicht über die Wälzkörper übertragen werden. Wenn es notwendig ist, das Lager zu erhitzen, um eine Montage zu ermöglichen, sollte die Temperatur +120°C nicht überschreiten.
- Nach der Montage sollte das Lager gedreht werden, um dessen einwandfreie Funktion zu prüfen. Wenn das Lager nicht richtig zu funktionieren scheint, sollte es überprüft werden, um die Ursache der Fehlfunktion festzustellen.
- Es ist nicht ratsam Öle und Fette zu mischen, da dies die Effizienz des Lagers beeinflusst.
- Lager müssen in einer sauberen Umgebung mit konstanter Temperatur gelagert werden. Sie sollten vorsichtig gehandhabt werden, um die Möglichkeit der Korrosion und Rostbildung zu vermeiden.
- Zur Reinigung von Wellen- und Gehäusesitzen dürfen nur fusselfreie Tücher verwendet werden, um das Eindringen von Verunreinigungen in das Lager zu vermeiden.

Schaden, Ursache & Wartung

Schaden		Ursache	Wartung/		
		Mangelhafte Schmierung	Schmierung verbessern		
	Schrilles	Zwischenraum zu schmal	Spielraum korrigieren		
	metallisches Geräusch	Nicht passend	Montageverfahren und Sitz untersuchen		
		Überlastung	Wellen- und Gehäusetoleranzen untersuchen		
	Dumpfes metalli- sches Geräusch	Brinellierte Lauffläche	Stossbelastungen vermeiden		
	Do walne i sai was	Rost und Beschädigungen	Dichtung überprüfen und erneut schmieren		
	Regelmässiges Geräusch	Abblättern der Laufbahnflä- che	Schmierung verbessern und Montage, Freiraum und Befestigungsmethode überprüfen		
Lärm		Eindringen von Fremdkörpern	Dichtungen prüfen und erneuern und neu schmieren		
	Unregelmässiges Geräusch	Übermässiger Spielraum	Spielraum korrigieren		
	Geraustri	Zerstörung und Abplatzung des Wälzkörpersatzes	Lasten und/oder Spielraum reduzieren		
	Änderndes Geräusch	Wechselnder Spielraum aufgrund von Temperaturän- derungen	Passung überprüfen, Gehäusematerial und Temperatur berücksichtigen		
		Schäden an Laufbahnen	Schmierung verbessern und Montage, Frei- raum und Befestigungsmethode überprüfen		
		Abblättern der Laufbahn und Wälzkörper	Schmierung verbessern und Montage, Frei- raum und Befestigungsmethode überprüfen		
Schwe	ere Vibration	Eindringen von Fremdkör- pern	Dichtungen prüfen und erneuern und neu schmieren		
		Übermässiges Spiel	Spielraum korrigieren		
		Ungeeignete Lage	Sicherstellen, dass Anlagefläche und Montagedurchmesser senkrecht zueinander stehen		
		Spielraum zu klein	Spielraum korrigieren		
		Ungeeignete Lage	Sicherstellen, dass Anlagefläche und Montagedurchmesser senkrecht zueinander stehen		
Übermässige Wärmeentwicklung		Überbelastung	Wellen und Gehäusetoleranzen auf Schliess- wirkung überprüfen		
		Schlechte Schmierung	Schmierung verbessern		
		Durchrutschende Passung	Empfohlene Wellen- und Gehäusepassungen beibehalten		
Cab		Zu viel Fett	Richtige Schmierstoffmenge verwenden		
Schmierversagen		Eindringen von Fremdkörpern	Dichtungen prüfen und erneuern und neu schmieren		

Schaden, Ursache & Wartung

Falsche Handhabung der Lager kann Schäden verursachen und die Lebensdauer verkürzen. Die folgende Liste zeigt typische Ursachen und Abhilfen.

Problem	Schaden	Ursache	Wartung	
	Abblätterungen auf einer Seite der gesamten Laufbahn	Übermässige axiale Belastung durch schlechte Montage oder lineare Ausdehnung	Spielpassung an nicht-rotierendem Lageraussenring verwenden	
	Abblätterungen an Wälzkörper- abstand auf Laufbahnen	Laufbahnen bei der Montage brinelliert Korrosion während der Stillstandszeit	Sorgfältige Montage	
Abblätte-	Vorzeitiges Abblättern der Laufbahn und Wälzkörper Oberflächen	Überlast Spielraum zu klein Mangelhafte Schmierung	Korrosionsschutz anwenden Passung überpfrüfen Spielraum korrigieren Richtige Schmierstoffmenge ver-	
rungen	Chen	Mangelhafte Passung Korrosion Falsche Montage und ungenügende Zent-	wenden Sorgfältige Montage und	
	Abplatzungen auf der Laufbahn	rierung Wellendurchbiegung	Zentrierung Lager mit grösserer Lagerluft verwenden	
		Geometrische Ungenauigkeit der Welle und Gehäuse	Welle und Anlagefläche sollten senk- recht sein	
	Abblätterungen um Laufbahn herum	Mangelhafte Gehäusegenauigkeit	Prüfen der geometrischen Genauig- keit der Gehäusebohrung	
Vertiefun- gen	Vertiefungen auf Laufbahn im Wälzkörperabstand	Stossbelastungen bei der Montage oder schlechte Handhabung	Sorgfältiger Umgang	
	Überrollung	Übermässige statische Belastung Eindringen von Fremdkörpern	Statische Belastung prüfen Sauberkeit der Bauteile, und Gänze der Dichtungen sicherstellen	
	Verfärbung der Laufbahn und	Überlastung Spielraum zu klein	Passung überprüfen Spielraum korrigieren	
Blockieren	Wälzkörperoberfläche Enthärtung von Oberflächen	Mangelhafte Schmierung	Richtige Schmierstoffmenge anwenden	
Elekt-	Laufbahn erodiert in regelmässi-	Mangelhafte Passung Lichtbogenbildung aufgrund von elekt-	Anpassungsverfahren prüfen Lager erden	
roerosion	gen Abständen	risch leitenden Lagern Zu grosse Stosslast	Lager isolieren Belastung korrigieren	
	Laufbahnflächenbruch	Zu hohe Presspassung Zunahme der Abplatzung und Aufweichung; Anschmelzen von Innenring an Welle	Fachgerechte Passung Korrekte Geometrie der Welle und des Gehäuses sicherstellen	
Fraktur	Wälzlagerbruch	Ecken-Ausrundungsradien zu gross Übermässige Stossbelastungen Übermässige Lagerluft	Ausrundungsradius korrigieren Last korrigieren Montage und Abstand überprüfen	
		Kippmoment Hochgeschwindigkeitsimpuls und hohe Beschleunigung	Sorgfältige Montage Gleichmässige Rotation sicherstellen	
	Käfigbruch	Mangelhafte Schmierung	Schmiermittel und Schmierverfahren prüfen	
		Eindringen von Fremdkörpern in Lager	Dichtungen verbessern	

Schaden, Ursache & Wartung

Falsche Handhabung der Lager kann Schäden verursachen und die Lebensdauer verkürzen. Die folgende Liste zeigt typische Ursachen und Abhilfen.

Problem	Schaden	Ursache	Wartung	
Schleu-	Verschmelzen der Laufbahn- und Wälz-	Hartes Fett	Weiches Fett benutzen	
dern	körperoberflächen	Hohe Anlaufbeschleunigung	Beschleunigung kontrollieren	
	5	Eindringen von Fremdkörpern	6:1.	
	Extremer Abrieb von Lauffläche, Wälz- körper und Käfig	Korrosion	Dichtung verbessern Schmierung verbessern	
	Korper and Kang	Mangelhafte Schmierung	Semineraria verbessem	
	Durchrutschende Passung	Lose Passung	Toleranzen und Montage korrigie- ren	
Abrieb		Nicht fachgerechte Befestigung	Befestigung korrigieren	
	Reibungsbedingte Korrosion	Kleine Bewegungen zwischen den Flächen	Presssitz erhöhen	
		Vibration in nicht-rotierenden Lager	Lagaryan dag//hyatian isaliayan	
	Riffelbildung	Kleine Schwingungen in der Anwendung	Lager von der Vibration isolieren Öl als Schmiermittel verwenden	
	Poston der Innenlager	Nicht fachgerechte Lagerung	Sorgfältige Lagerung	
	Rosten der Innenlager	Kondensation	und Handhabung	
	Rost auf Passfläche	Reibung	Presspassung erhöhen	
Korrosion	nost auf Passilacile	Fluktuierende Last	Öl als Schmiermittel verwenden	
	Korrosion	Eindringen von Säure, Lauge oder Gas	Dichtung überprüfen	
	KOITOSIOTI	Chemische Reaktion mit Schmierstoff	Fachgerechte Schmierung anwenden	

FÜR TECHNISCH OPTIMALE UND WIRTSCHAFTLICHE LÖSUNGEN.

KUGEL- UND ROLLENLAGER
GEHÄUSELAGER

GELENKLAGER UND GELENKKÖPFE

LINEARTECHNIK

MINIATURLAGER

GLEITLAGER

DICHTUNGEN

KUGELN, ROLLEN, NADELN

ZUBEHÖR

HAUPTSITZ SCHWEIZ MTO & CO. AG

Grabenstrasse 9 CH-7324 Vilters T. +41 81 300 40 00 www.mtoswiss.ch info@mtoswiss.ch NIEDERLASSUNG ÖSTERREICH MTO UNION GMBH

Münkafeld 7b A-6800 Feldkirch T. +43 55 223 78 26 www.mtoeurope.com info@mtoeurope.com